Boards & Beyond:
Endocrinology Slides

Color slides for USMLE Step 1 preparation
from the Boards and Beyond Website

Jason Ryan, MD, MPH

2021 Edition

Boards & Beyond provides a virtual medical school curriculum used by students around the globe to supplement their education and prepare for board exams such as USMLE Step 1.

This book of slides is intended as a companion to the videos for easy reference and note-taking. Videos are subject to change without notice. PDF versions of all color books are available via the website as part of membership.

Visit www.boardsbeyond.com to learn more.

Copyright © 2021 Boards and Beyond
All rights reserved.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid Gland</td>
<td>1</td>
</tr>
<tr>
<td>Thyroid Disorders</td>
<td>9</td>
</tr>
<tr>
<td>Thyroid Cancer</td>
<td>17</td>
</tr>
<tr>
<td>Adrenal Glands</td>
<td>20</td>
</tr>
<tr>
<td>CAH</td>
<td>25</td>
</tr>
<tr>
<td>Adrenal Disorders</td>
<td>30</td>
</tr>
<tr>
<td>Endocrine Pancreas</td>
<td>39</td>
</tr>
<tr>
<td>Diabetes</td>
<td>46</td>
</tr>
<tr>
<td>Insulin</td>
<td>55</td>
</tr>
<tr>
<td>Treatment of Diabetes</td>
<td>59</td>
</tr>
<tr>
<td>Reproductive Hormones</td>
<td>65</td>
</tr>
<tr>
<td>Male Reproductive Hormones</td>
<td>69</td>
</tr>
<tr>
<td>Female Reproductive Hormones</td>
<td>77</td>
</tr>
<tr>
<td>Menstrual Cycle</td>
<td>81</td>
</tr>
<tr>
<td>Pituitary Gland</td>
<td>88</td>
</tr>
<tr>
<td>Parathyroid Gland</td>
<td>96</td>
</tr>
<tr>
<td>MEN Syndromes</td>
<td>104</td>
</tr>
<tr>
<td>Signaling Pathways</td>
<td>107</td>
</tr>
</tbody>
</table>
Thyroid Gland

Thyroid Anatomy
- Two lobes (left, right)
- Isthmus: thin band of tissue between lobes
- Sometimes pyramidal lobe above isthmus

Thyroid Embryology
- Forms from floor of pharynx (epithelial cells)

24-28 Day Old Embryo

Foramen Cecum
- Descends into neck
- Initially maintains connection to tongue
 - Thyroglossal duct
 - Disappears later in development
- Two remnants of duct in child/adult
 - Foramen cecum in tongue
 - Pyramidal lobe of thyroid
Thyroglobulin
- Large protein
- Produced by thyroid follicular cells
- Contains numerous tyrosine molecules

Thyroid Hormones
- Two hormones: T3 and T4
- Synthesized from tyrosine and iodine

Ectopic Thyroid
- Functioning thyroid tissue outside of gland
- Most common location is base of tongue
- Presents as a mass in the tongue
 - Commonly detected during increased demand for hormones
 - Puberty and pregnancy
- May be the only functioning thyroid tissue
 - May under-produce thyroid hormone → hypothyroidism
 - ↑ TSH → growth of ectopic tissue

Thyroid Histology
- Thyroid gland contains "follicles"
- Filled with colloid (protein material)
- Single layer of epithelial cells lines each follicle
 - "Follicular cells"
- Hormone synthesized by follicular cells

Thyroid Hormones
- Contain the element iodine
- Iodized salt
 - Table salt (NaCl) mixed with small minute amount of iodine
 - Done in many countries to prevent iodine deficiency
 - Added to salt in US in 1924

Thyroglobulin
- Large protein
- Produced by thyroid follicular cells
- Contains numerous tyrosine molecules
Iodine

- **Iodine** = I (chemical element, atomic number 53)
- **Iodide** = iodine bound to another atom
 - "Iodide salt" with negative charge (I⁻)
 - Potassium iodide = KI
 - Plasma iodine exists as iodide salt
- For thyroid hormone, iodide in our diet needs to be:
 - Taken up by follicular cells
 - Oxidized to I₂ (undergo "oxidation")
 - Added to organic/carbon structures ("organification")
Amiodarone

- Class III antiarrhythmic drug
- Commonly used in atrial fibrillation
- Contains iodine
- Can cause hypothyroidism via excess iodine
- Wolff-Chaikoff Effect

Hyperthyroid Medications

- **Propylthiouracil (PTU)**
 - Inhibits TPO: ↓ T3/T4 from thyroid gland
 - Inhibits 5'-deiodinase: ↓ T4 to T3 conversion peripherally
- **Methimazole**
 - Inhibits TPO
- **Propranolol**
 - Beta blocker
 - Weak inhibitor of 5'-deiodinase
 - Excellent drug in thyrotoxicosis
 - Blocks catecholamines and T4-T3 conversion

PTU and Methimazole are both "thioamides"

Thyroid Hormones

- **T4** is major hormone produced by thyroid gland
 - >90% of thyroid hormone produced is T4
 - T3 more potent hormone
 - T4 is a "prohormone" for T3
 - **5' deiodinase** converts T4 → T3
 - Most conversion occurs in peripheral tissues

Hormone Synthesis

Eyes of the follicular cell:

- Thyroid Peroxidase (TPO)
- Organification of iodide into MIT/DIT
- Coupling of MIT/DIT into T3/T4
- TPO antibodies common in autoimmune thyroid disease
Thyroid Hormone Receptor

• Family of nuclear receptors
• Hormone-activated transcription factors
• Modulate gene expression

TBG - Thyroxine-Binding Globulin

- Most plasma thyroid hormone is T4
- Thyroid hormones poorly soluble in water
- Most T4 is bound to TBG
- Some with transthyretin and albumin
- TBG present in small amount but has high affinity
- TBG produced in liver
- Key point:
 - Less TBG → less available T4/T3 to tissues

TBG - T4 → T4

Radioactive Iodine

- \(^{131}\)I is an isotope of iodine
- Has 53 protons like elemental iodine
- Extra neutrons
- Emits radiation (β-decay)
- Exposure to radioactive iodine in thyroid gland
 - Competes with elemental iodine for uptake
 - Will concentrate in thyroid gland
 - Small dose: Used for imaging
 - Large dose: Destroys thyroid tissue
- Used as therapy for hyperthyroidism

Amiodarone

- Mimics T4
 - Inhibits 5'-deiodinase
 - \(\text{T3} \rightarrow \text{TSH}\) from pituitary gland
 - TSH rises after start of therapy then normalizes

TBG - Thyroxine-Binding Globulin

- Estrogen raises TBG levels
 - Modifies TBG molecules
 - Slows clearance from plasma
 - Pregnancy, OCP users
 - Will raise total T4 levels
- Liver failure lowers TBG levels
 - Less production of protein
 - Can lower total T4 levels

Radionuclide Iodine

- \(^{131}\)I is an isotope of iodine
- Has 53 protons like elemental iodine
- Extra neutrons
- Emits radiation (β-decay)
- Exposure to radioactive iodine in thyroid gland
 - Competes with elemental iodine for uptake
 - Will concentrate in thyroid gland
- Small dose: Used for imaging
- Large dose: Destroys thyroid tissue
- Used as therapy for hyperthyroidism

Amiodarone

- Mimics T4
 - Inhibits 5'-deiodinase
 - \(\text{T3} \rightarrow \text{TSH}\) from pituitary gland
 - TSH rises after start of therapy then normalizes

TBG - Thyroxine-Binding Globulin

- Estrogen raises TBG levels
 - Modifies TBG molecules
 - Slows clearance from plasma
 - Pregnancy, OCP users
 - Will raise total T4 levels
- Liver failure lowers TBG levels
 - Less production of protein
 - Can lower total T4 levels

Thyroid Hormone Receptor

- Family of nuclear receptors
- Hormone-activated transcription factors
- Modulate gene expression

TBG - Thyroxine-Binding Globulin

- Most plasma thyroid hormone is T4
- Thyroid hormones poorly soluble in water
- Most T4 is bound to TBG
- Some with transthyretin and albumin
- TBG present in small amount but has high affinity
- TBG produced in liver
- Key point:
 - Less TBG → less available T4/T3 to tissues

TBG - T4 → T4
Thyroid Hormone

CNS and Bone effects

- TH required for normal bone growth/CNS maturation
- Childhood hypothyroidism → cretinism
- Causes
 - Iodine deficiency
 - Thyroid dysgenesis
 - Inborn errors of hormone synthesis (dyshormonogenesis)
 - TPO most common

Effects of Thyroid Hormone

- Major regulator of metabolic activity and growth
- Glucose, lipid metabolism
- Cardiac function
- Bone growth
- CNS development

Effect of Thyroid Hormone

Metabolic Effects

- ↑ basal metabolic rate
 - Basal rate of energy use per time
 - Amount of energy burned if you slept all day
- ↑ Na/K ATPase pumps
 - More pumps = more ATP consumed
 - ↑ oxygen demand to replenish ATP
 - ↑ respiratory rate
 - ↑ body temperature
- Hypothyroid patients: weight loss

Metabolic Effects

- ↑ Carbohydrate Metabolism
 - ↑ glycogenolysis, gluconeogenesis
- ↑ Fat Metabolism
 - ↑ lipolysis
 - ↑ concentrations of cholesterol, triglycerides
 - ↑ low-density lipoprotein receptors in liver (↑ LDL)
 - ↑ cholesterol secretion in bile
 - Hyperthyroid patients: ↑ cholesterol
 - Hyperthyroid patients: hyperglycemia

Cardiac Effects

- ↑ CO/HR/SV/contractility
- ↑ β1 receptors in heart
- Hyperthyroid patients: Tachycardia

Metabolic Effects

- ↑ basal metabolic rate
- Basal rate of energy use per time
- Amount of energy burned if you slept all day
- ↑ Na/K ATPase pumps
 - More pumps = more ATP consumed
- ↑ oxygen demand to replenish ATP
- ↑ respiratory rate
- ↑ body temperature
- Hypothyroid patients: weight loss

Hyperthyroid patients:

- ↑ cholesterol
- Hyperglycemia

Most common treatable cause intellectual disability

Most babies appear normal

Maternal T3/T4 crosses placenta

Newborn screening programs
 - Measure T4 or TSH from heel-stick blood specimens
Thyroid Hormone

- Intellectual disability
- Coarse facial features
- Short stature
- Umbilical hernia
- Enlarged tongue

Thyroid Hormone Regulation

- Serum T4/T3 level sensed by hypothalamus
- Releases thyroid releasing hormone (TRH)

Thyroid Panel

- Four standard measurements to assess thyroid

<table>
<thead>
<tr>
<th>Test</th>
<th>Normal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH</td>
<td>0.4 to 5.0 mU/L</td>
</tr>
<tr>
<td>Total T4</td>
<td>60 to 145 nmol/L</td>
</tr>
<tr>
<td>Total T3</td>
<td>1.1 to 3 nmol/L</td>
</tr>
<tr>
<td>Free T4</td>
<td>0.01-0.03 nmol/L</td>
</tr>
</tbody>
</table>

Note:
- T4 > T3
- Total T4 > Free T4 (most bound to TBG)

Pregnancy

- Multiple effects on thyroid hormone production
 - Rise in total plasma T4/T3 levels
 - Rise in TBG levels (estrogen)
 - hCG stimulates thyroid (same alpha unit as TSH)
 - Raises free T4 → lower TSH

Calcitonin

- Hormone produced by thyroid
- Synthesized by parafollicular cells (C-cells)
Calcitonin

- Lowers serum calcium
 - Suppresses resorption of bone; inhibits osteoclasts
 - Inhibits renal reabsorption of calcium, phosphorus
 - Increased calcium in urine
- Probably minor role in calcium handling in humans
- Used as pharmacologic therapy for hypercalcemia
Thyroid Disorders

Hyperthyroid
- Thyroid gland overactive
- Leads to weight loss
- Increased metabolic rate
- Tremors
- Thyroid enlargement
- Thyrotoxicosis

Hypothyroid
- Thyroid gland underactive
- Leads to weight gain
- Decreased metabolic rate
- Constipation
- Dry skin
- Bradycardia

Hyperlipidemia
- Classic feature of hypothyroidism
- Increased total cholesterol
- Increased LDL cholesterol
- Primary mechanism: Decreased LDL receptor density
 - T₃ upregulates LDL receptor gene activation

Myxedema
- Non-pitting edema of the skin from hypothyroidism
- Hyaluronic acid deposits in dermis
- Draws water out → swelling
- Usually facial/peri orbital swelling
- Pretibial myxedema
 - Special form of myxedema over shin
 - Seen in Graves' disease (hyperthyroidism)
- Myxedema coma = coma from hypothyroidism

Thyroid Disorders
- Jason Ryan, MD, MPH
Goiter
- Enlarged thyroid
- High TSH, inability to produce T3/T4
- Thyroid stimulating antibodies (Graves')

Thyroid Storm
- Life-threatening hyperthyroidism (thyrotoxicosis)
- Usually precipitated by acute event
 - Patient with pre-existing hyperthyroid disease
 - Graves' or toxic multinodular goiter
 - Surgery, trauma, infection
 - Massive catecholamine surge
 - Fever, delirium
 - Tachycardia with death from arrhythmia
 - Hyperglycemia (catecholamines/thyroid hormone)
 - Hypercalcemia (bone turnover)

Hyponatremia
- Hypothyroidism is a well-described cause ↓Na
- High levels of ADH (SIADH)
- May lead to confusion

Hyperthyroidism
- Metabolism SPEEDS UP
 - Hyperactivity
 - Heat intolerance
 - Weight loss with increased appetite
 - Diarrhea
 - Hyperreflexia
 - Warm, moist skin
 - Fine hair
 - Tachycardia (atrial fibrillation)

Thyroid Replacement
- Levothyroxine (Synthroid): synthetic T4
- Liothyronine (Cytomel): synthetic T3
- Levothyroxine preferred
 - T3 absorbed from intestines rapidly
 - Can cause mild hyperthyroidism symptoms
 - Tachycardia, tremor
 - Also, T4 converted to T3
- Titrate dose until TSH is normal

Hypothyroid Myopathy
- Muscle symptoms common in hypothyroid
 - Weakness, cramps, myalgias
 - ↑ serum creatine kinase (CK) common (up to 90%)
Hyperthyroidism

- Graves' disease (1 cause)
- Toxic multinodular goiter
- Amiodarone
- Iodine load
- Early thyroiditis

Reverse T3

- Isomer of T3 also derived from T4

Lab Findings

- Central hyper/hypo thyroid disease
 - Low TSH and low T3/T4; High TSH and high T3/T4
 - Rare disorders of the pituitary, hypothalamus
 - Usually hypothalamic-pituitary tumors
 - Tumors block secretion TRH/TSH (hypothyroidism)
 - Rarely a TSHoma can secrete TSH (hyperthyroidism)
 - Pituitary resistance to thyroid hormone (hyperthyroidism)

Reverse T3

- Level usually parallels T4
 - Low T4 → Low rT3
 - One special use: Euthyroid sick syndrome
 - Critically ill patients → low TSH → Low T3/T4
 - Can look like central hypothyroidism
 - rT3 rises in critical illness (impaired clearance)
 - Critically ill patient with low TSH/T4/T3
 - Check rT3
 - Low → central hypothyroidism
 - High → sick euthyroid syndrome

Hyperthyroidism

- Graves’ disease (1 cause)
- Toxic multinodular goiter
- Amiodarone
- Iodine load
- Early thyroiditis

Lab Findings

- Most disorders are primary disease
 - Disorder of the thyroid gland
 - TSH is opposite thyroid hormone
 - Hypothyroidism = ↑ TSH with low T3/T4
 - Hyperthyroidism = ↓ TSH with high T3/T4

Lab Findings

- Best initial test is TSH
Graves' Disease

- Autoimmune disease
- Thyroid stimulating antibodies produced
- Symptoms of hyperthyroidism occur

Graves' Disease

- Exophthalmos (bulging eyes)
 - Proptosis (protrusion of eye) and pretibial edema
 - Usually no ocular symptoms
- Pretibial myxedema (shins)
- T-cell lymphocyte activation of fibroblasts
- Fibroblasts contain TSH receptor
- Stimulation → secretion of glycosaminoglycans
 - Hydrophilic substances, mostly hyaluronic acid
 - Draws in water → swelling

Graves' Disease

- Diagnosis:
 - Usually hyperthyroid labs plus exophthalmos
 - Can measure TSH receptor antibodies
 - “Thyroid stimulating immunoglobulins”
- Treatment
 - Symptoms: beta blockers, thionamides
 - Drugs often started in preparation for definitive therapy
 - Radioactive iodine ablation or surgery

Thionamides

- Methimazole
 - Inhibits thyroid peroxidase (TPO)
 - Organification of iodine
 - Coupling of MIT/DIT
- Propylthiouracil (PTU)
 - Inhibits TPO
 - Also inhibits 5'-deiodinase
 - Blunts peripheral conversion T4→T3

Thionamides

- Skin rash (common)
- Agranulocytosis
 - Rare drop in WBC
 - May present as fever, infection after starting drug
 - WBC improves with stopping drug
 - Aplastic anemia cases reported
- Hepatotoxicity
Thionamides
- Methimazole: teratogen
 - Associated with congenital malformations
 - Especially 1st trimester
 - PTU often used during early pregnancy

Thyroid Storm
- Treatment
 - Propranolol
 - Beta blocker
 - Blocks T4 → T3 conversion
 - Thionamides (PTU, Methimazole)
 - SSKI (saturated solution of potassium iodide)
 - Iodide load → shuts down T4 production
 - Wolff-Chaikoff effect
 - Steroids
 - Reduce T4 → T3 conversion
 - Suppress auto-immune damage
 - Treat possible concomitant adrenal insufficiency

Graves' Ophthalmopathy
- Sometimes worsens despite treating hyperthyroidism
- Can cause irritation, excessive tearing, pain
- Symptoms often worse by cold air, wind, bright lights
- Severe inflammation treatments:
 - Steroids
 - Radiation
 - Surgery

Toxic Adenomas
- Nodules in thyroid that function independently
 - Usually contain mutated TSH receptor
 - Do not respond to TSH
 - One nodule: Toxic adenoma
 - Multiple: Toxic multinodular goiter
 - Findings:
 - Palpable nodule
 - Hyperthyroidism symptoms/labs
 - Treatment: Radioactive iodine or surgery

Radioactive Iodine Uptake
- Important test for thyroid nodules
- Administration of I^{131} (lower dose than ablation)
- Contraindicated in pregnancy/breast feeding
- "Hot" nodule
 - Takes up I^{131}
 - Not-cancerous
- "Cold" nodule
 - Chance of cancer (~5%)
 - Often biopsied (Fine-needle aspiration)

Jod-Basedow Phenomenon
- Iodine-induced hyperthyroidism
- Often occurs in regions of iodine deficiency
- Often occurs in patients with toxic adenomas
 - Drugs administered with high iodine content
 - Expectorants (potassium iodide)
 - CT contrast dye
 - Amiodarone
Goitrogens
• Substances that inhibit thyroid hormone production
 • Most common is iodine
 • Lithium (inhibits release of thyroid hormone)
 • Certain foods (cassava and millet)

Iodine

- Deficiency
 • Hypothyroidism
 • Goiter

- Excess
 • Hypothyroidism
 • Wolff-Chaikoff

- Load
 • Hyperthyroidism

Hypothyroidism
- Iodine deficiency
- Iodine excess
- Congenital hypothyroidism
- Amiodarone
- Thyroiditis
 • Hashimoto’s (#1 cause when dietary iodine is sufficient)
 • Subacute
 • Riedel’s

Iodine Deficiency
- “Endemic goiter”
 • Goiter in region with widespread iodine deficiency
 • Common in mountainous areas (iodine depleted by run-off)
 • Constant elevation of TSH → enlarged thyroid

Iodine Excess
- Excessive iodide in diet could lead to hyperthyroidism
 • Thyroid protects itself via Wolff-Chaikoff Effect
 • Organification inhibited by ↑ iodide
 • Less synthesis of MIT/DIT
 • Chronic, high iodine intake → goiter/hypothyroidism

Amiodarone
- Two types of hyperthyroidism
 • Type I
 • Occurs in patients with pre-existing thyroid disease
 • Graves’ or Multi-nodular goiter
 • Amiodarone provides iodine → excess hormone production
 • Type II
 • Destructive thyroiditis
 • Excess release T4/T3 (no ↑ hormone synthesis)
 • Direct toxic effect of drug
 • Can occur in patients without pre-existing thyroid illness

Goitrogens
- Substances that inhibit thyroid hormone production
 • Most common is iodine
 • Lithium (inhibits release of thyroid hormone)
 • Certain foods (cassava and millet)
Amiodarone

- Can cause hypothyroidism
- Excess iodine → Wolff-Chaikoff Effect
 - Suppression of thyroid hormone synthesis
 - Normal patients “escape” in few weeks
 - Pre-existing subclinical thyroid disease → “failure to escape”
- Also mimics T4
 - Inhibits 5’-diodinase

Amiodarone

Congenital Hypothyroidism

- TH required for normal bone growth/CNS maturation
- Childhood hypothyroidism → cretinism
- Stunted growth
- Intellectual impairment
- Causes
 - Iodine deficiency
 - Thyroid dysgenesis
 - Inborn errors of hormone synthesis (dyshormonogenesis)
 - TPO most common

Thyroid Hormone

- Most common treatable cause intellectual disability
- Newborn screening programs
 - Measure T4 or TSH from heel-stick blood specimens

Iatrogenic Hypothyroidism

- Thyroid surgery
 - Often done for Graves’ or malignancy
- Radioiodine therapy
 - I131 administered orally as solution or capsule
 - Beta-emissions → tissue damage
 - Ablation of thyroid function over weeks
 - Done for Graves’ or malignancy
- Neck radiation
 - Hodgkin’s lymphoma
 - Head and neck cancer

Thyroid Hormone

- CNS and Bone effects
 - Intellectual impairment
 - Coarse facial features
 - Short stature
 - Umbilical hernia
 - Enlarged tongue

Always check TSH before starting amiodarone

Amiodarone

Hypothyroidism

Wolff-Chaikoff Hypothyroidism

↓T4→T3

Hyperthyroidism

Iodine Load Thyroiditis

Hyperthyroidism

↓T4→T3

Iodine Excess

Inhibits 5’-diodinase

Wellcome Images/Wikipedia
Hashimoto's Thyroiditis
Chronic Autoimmune Thyroiditis
- Most common cause of hypothyroidism (non-diet)
- Lymphocytes infiltrate thyroid gland
 - Autoimmune disorder (T-cell attack thyroid; B cell activation)
 - HLA-DR3, HLA-DR5 and others

Hashimoto's Thyroiditis
Chronic Autoimmune Thyroiditis
- Antibodies produced
 - Anti-TPO
 - Anti-thyroglobulin
- Histology:
 - Massive lymphocytic infiltrate (germinal centers)
 - Hurthle cells (enlarged eosinophilic follicular cells)

Hashimoto's Thyroiditis
Chronic Autoimmune Thyroiditis
- Primarily occurs in women
- Enlarged non-tender thyroid gland
- Gradual loss of thyroid function → symptoms
- Symptoms/labs of hypothyroidism
- Treatment: thyroid hormone replacement
- Increased risk of Non Hodgkin B cell lymphoma

Hashimoto's Thyroiditis
Chronic Autoimmune Thyroiditis
- Antibodies produced
- Anti - TPO
- Anti - thyroglobulin
- Histology:
 - Massive lymphocytic infiltrate (germinal centers)
 - Hurthle cells (enlarged eosinophilic follicular cells)

Subacute Thyroiditis
de Quervain's/granulomatous thyroiditis
- Granulomatous inflammation of thyroid
- Occurs in young females
- Tender, enlarged thyroid gland
- Hyperthyroid → euthyroid → hypothyroid
- Treatment:
 - Anti-inflammatories (aspirin, NSAIDs, steroids)
 - Thyroid symptoms usually mild (no treatment)
 - Usually resolves in few weeks

Riedel's Thyroiditis
- Fibroblast activation/proliferation
- Fibrous tissue (collagen) deposition in thyroid
- "Rock hard" thyroid
- Often extends beyond the thyroid
- Parathyroid glands → hypoparathyroidism
- Recurrent laryngeal nerves → hoarseness
- Trachea compression → difficulty breathing
- Associated with IgG4 plasma cells
 - May be an "IgG4-related disease" (autoimmune pancreatitis)
 - IgG4 plasma cells identified in biopsy specimens

Lymphocytic Thyroiditis
Painless Thyroiditis
- Variant of Hashimoto's
- Lymphocytic infiltration of thyroid gland
- Transient hyperthyroidism
 - Can look like Graves' without eye/skin findings
 - Serum thyroid stimulating immunoglobulins not elevated
- Followed sometimes by hypothyroidism
 - Can look like Hashimoto's
 - Usually self-limited (weeks)
Thyroid Cancer

General Principles
- Thyroid cancer usually no hyper/hypo symptoms
- Often presents as nodule
- Differential is benign adenoma versus cancer
- Biopsy done by fine needle aspiration

Thyroid Imaging
- Ultrasound
 - Some characteristics suggest cancer
 - Borders, vascularity, calcifications

Radioactive Iodine Uptake
- Small oral dose I131 given to patient
- Scintillation camera → image of thyroid
- Normal: diffuse, even uptake
- Diffuse high uptake: Graves’
- Diffuse low uptake: Hashimoto’s
- Multiple areas of high uptake: nodular goiter
- Single “hot” nodule: adenoma
- Single “cold” nodule: Possible cancer
 - Most cancers do not make hormone
 - About 10% cold nodules are malignant

Follicular Adenoma
- Common cause of thyroid nodules
- Benign proliferation of follicles
- Normal follicular tissue seen on biopsy
- Completely surrounded by fibrous capsule
- FNA cannot distinguish between adenomas/cancer
 - Cannot see entire capsule
 - Follicular carcinoma has similar histology by FNA
 - FNA follicular pathology followed over time
 - Growth, suspicious new findings → surgery

Thyroid Cancer
- Papillary
- Follicular
- Medullary
- Anaplastic
Papillary Carcinoma

- Most common form thyroid cancer (~80%)
- Increased risk with prior radiation exposure
 - Childhood chest radiation for mediastinal malignancy or acne
 - Survivors of atomic bomb detonation (Japan)
 - Nuclear power plant accidents (Chernobyl)
- Presents as thyroid nodule
 - Sometimes seen on chest/neck imaging (CT/MRI)
 - Diagnosis made after fine needle aspiration (FNA)
- Excellent prognosis
 - Treated with surgery plus radioactive iodine ablation

Psammoma Bodies

- Calcifications with an layered pattern
- Seen in other neoplasms but only papillary for thyroid

Papillary Carcinoma

- Three key pathology findings:
 - Psammoma bodies
 - Nuclear grooves
 - Orphan Annie’s Eye Nuclei
- Diagnosis made by nuclear findings

Nuclear Grooves

- Empty-appearing nuclei

Orphan Annie's Eyes

- Empty-appearing nuclei
Anaplastic Carcinoma
- Occurs in elderly
- Highly malignant - invades local tissues
- Dysphagia (esophagus)
- Hoarseness (recurrent laryngeal nerve)
- Dyspnea (trachea)
- Don't confuse with Riedel's ("rock hard" thyroid/young pt)
- Poor prognosis
- Pathology: Undifferentiated cells
- No papilla, follicles, or amyloid

MEN Syndromes
- Gene mutations that run in families
- Cause multiple endocrine tumors
- MEN 2A and 2B associated with medullary carcinoma
- Caused by RET oncogene mutation
- Some patients have elective thyroidectomy

Medullary Carcinoma
- Cancer of parafollicular cells (C cells)
- Produces \(\text{calcitonin} \)
 - Lowers serum calcium
 - Normally minimal effect on calcium levels
 - Used for monitoring
- \(\text{Amyloid} \) deposits in thyroid
 - Amyloid = protein deposits
 - Calcitonin = peptide
 - Appearance of amyloid on biopsy

Follicular Carcinoma
- Similar to follicular adenoma
- Breaks through ("invases") fibrous capsule
- FNA cannot distinguish between adenomas/cancer
- Follicular pathology followed over time
 - Growth, suspicious new findings \(\rightarrow \) surgery

Follicular Carcinoma
- Possible \textit{hematogenous} metastasis
- Treatment:
 - Thyroidectomy
 - I\textsubscript{131} to ablate any remaining tissue or metastasis

Anaplastic Carcinoma
- Undifferentiated Carcinoma
 - Occurs in \textit{elderly}
 - Highly malignant - invades local tissues
 - Dysphagia (esophagus)
 - Hoarseness (recurrent laryngeal nerve)
 - Dyspnea (trachea)
 - Don't confuse with Riedel's ("rock hard" thyroid/young pt)
 - Poor prognosis
 - Pathology: Undifferentiated cells
 - No papilla, follicles, or amyloid
Adrenal Glands

Cortex and Medulla
- Cortex: Three groups of hormones
 - Mineralocorticoids (aldosterone)
 - Glucocorticoids (cortisol)
 - Androgens (testosterone)
 - Derived from mesoderm
- Medulla
 - Epinephrine and norepinephrine
 - Sympathetic nervous system control
 - Derived from neural crest

Mineralocorticoids
- Most important is aldosterone
- Key effects on kidney function
- Release controlled by RAA system
- Renin-angiotensin-aldosterone system
- Increase Na+/Water resorption
- Promote K+/H+ excretion

Collecting Duct
- Lumen (Urine)
- Principal Cell
- Na+ Interstitium/Blood
- Aldosterone
- Aldosterone
- H2O
- ATP
- H+ Intercalated Cell
- Aldosterone
- H+
Adrenal Androgens
- Small contribution to androgen production in males
- ~50% androgens for females
- Clinical relevance: **congenital adrenal hyperplasia**
 - Over/underproduction → abnormal sexual development
- Production stimulated by ACTH (like cortisol)

Cortisol
- Major glucocorticoid
- Synthesized by adrenal cortex
- Binds to intracellular receptors (cytosol)
 - Glucocorticoid receptor (GR)
- Translocates to nucleus
- Activates/suppresses gene transcription

Cortisol Binding Globulin
- Cortisol poorly soluble in plasma
- Most (>90%) serum cortisol bound to CBG
- Levels ↑ estrogen

Pituitary-Adrenal Axis
- Controls **cortisol secretion**
 - Hypothalamus: CRH
 - Corticotropin releasing hormone
 - Paraventricular nucleus (PVN)
 - Anterior pituitary: ACTH
 - Adrenocorticotropic hormone
 - Acts on adrenal gland
 - cAMP/PKA 2nd messenger
 - Adrenal: Cortisol

Circadian Rhythms
- Serum cortisol **highest early morning** (about 6 AM)
 - 10 to 20 mcg/dL
- Lowest one hour after sleep onset
 - Less than 5 mcg/dL
- Testing rarely done with single blood test

Cortisol
- Hormone Effects
 - Maintains **blood pressure**
 - Effects on vascular smooth muscle
 - Increases vascular sensitivity (α1) to norepi/epi
 - ↓NO mediated vasodilation
 - ↑ cortisol: hypertension (Cushing’s disease)
 - ↓ cortisol: hypotension (adrenal insufficiency)
Cortisol

Hormone Effects

- Suppresses immune system
- Sequester lymphocytes in spleen/nodes
- Reduce T and B cell levels in plasma
- Block neutrophil migration
 - ↑ peripheral neutrophil count
- Mast cells: blocks histamine release
 - ↓ eosinophil counts
- Basis for steroids as immunosuppressive drug therapy

Corticosteroid Drugs

- More glucose produced by liver
 - ↑ synthesis of glucose 6-phosphatase, PEPCK
 - ↑ gluconeogenesis
- Less glucose taken up peripherally (muscle, fat)
- Net results: ↑ serum glucose
- More glycogen storage in liver
 - ↑ synthesis of glycogen synthase

Cortisol

Effects

- Inactivate NF-KB
 - Key inflammatory transcription factor
 - Mediates response to TNF-α
 - Controls synthesis inflammatory mediators
 - COX-2, PLA2, Lipoxygenase

Cortisol

Effects

- Activation of lipolysis in adipocytes
 - ↑ free fatty acids
 - ↑ total cholesterol, ↑ triglycerides
- Stimulate adipocyte growth
- Key effect: fat deposition

Cortisol

Effects

- Enhanced effects of glucagon, epinephrine
- Leads to insulin resistance
- Long term steroid use: diabetes
Cortisol
Effects
- Muscle atrophy
- Skin effects
 - Blunted epidermal cell division in skin
 - ↓ collagen, inhibition of fibroblasts
 - Net effects: Thin skin, easy bruising, striae
- Bones: Inhibits osteoblasts
 - Steroids → osteopenia and osteoporosis

Zones of the Adrenal Glands

Zona Glomerulosa

Zona Glomerulosa

Zona Glomerulosa
Ketoconazole

- Antifungal
- Blocks ergosterol synthesis in fungi
- Potent inhibitor of 17,20 lyase
- Key side effect: gynecomastia
- Also inhibits 17-alpha hydroxylase, desmolase
 - Blocks cortisol synthesis
 - Can be used to treat Cushing’s syndrome
CAH

Congenital Adrenal Hyperplasia

- Enzyme deficiency syndrome
- Loss of one of the four enzymes for cortisol synthesis
 - 21-α hydroxylase
 - 11-β hydroxylase
 - 17-α hydroxylase
 - 3-β hydroxysteroid dehydrogenase

Low Cortisol

Signs/Symptoms

- Hypoglycemia
- Nausea/vomiting

CAH

Congenital Adrenal Hyperplasia

- All result in low cortisol
- Stimulates ACTH release
- Can cause ↑ production of other hormones
 - Mineralocorticoids
 - Androgens

1 Cortisol → ACTH → Adrenal Hyperplasia → ↑ Non-cortisol hormone synthesis

CAH

Cholesterol → Aldosterone → Cortisol → Androgens

CAH

Congenital Adrenal Hyperplasia

Jason Ryan, MD, MPH

Matthew Colo/Wikipedia
21-α Hydroxylase Deficiency

- **Deficiency**
 - Na loss → water loss
 - Hypovolemia → shock
 - Hyperkalemia
 - ↑ renin
- **Excess**
 - Na retention
 - Hypertension
 - Hypokalemia
 - ↑ renin

Androgens

- **Signs/Symptoms**
 - Depend on chromosomal sex of child (XX/XY)
 - Excess androgens
 - Female (XX): Ambiguous genitalia
 - Male (XY): Precocious (early) puberty
 - Androgen deficiency
 - Female (XX): Normal genitalia
 - Male (XY): Female or ambiguous genitalia

Ambiguous Genitalia

- Females (XX) with excess androgen exposure
- Males (XY) with deficient androgen exposure

Aldosterone

- **Deficiency**
 - Na loss → water loss
 - Hypovolemia → shock
 - Hyperkalemia
 - ↑ renin
- **Excess**
 - Na retention
 - Hypertension
 - Hypokalemia
 - ↑ renin

ACTH Effects

- High ACTH can cause skin hyperpigmentation
- Melanocyte stimulating hormone (MSH)
 - Common precursor protein in pituitary with ACTH
 - ↑ melanin synthesis

Proopiomelanocortin

- ACTH
 - MSH
21-α Hydroxylase Deficiency

- Classic cause of CAH (90% of CAH)
- Low cortisol symptoms
- Low mineralocorticoid symptoms
- Excess androgen symptoms
 - Girls (XX): ambiguous genitalia
 - Boys (XY): precocious puberty (early onset)
- Variable symptoms based on enzyme levels
 - Classic form: 0 to 2% normal enzyme activity
 - Non-classic form: 20-50% normal enzyme activity

11-β Hydroxylase Deficiency

- Similar to 21-α hydroxylase deficiency
- Low cortisol symptoms
- Girls: ambiguous genitalia
- Boys: precocious puberty
- One exception: ↑ mineralocorticoid activity
 - ↑ 11-deoxycorticosterone (weak mineralocorticoid)
 - Hypertension
 - Hypokalemia

17-α Hydroxylase Deficiency

- Cytochrome P450c17 enzyme (CYP17A1)
- Found in adrenal glands and gonads
- Catalyzes two reactions
 - 17-hydroxylase
 - 17,20-lyase

<table>
<thead>
<tr>
<th>Type</th>
<th>Clinical Features</th>
</tr>
</thead>
</table>
| Classic, Salt-losing | Nausea/Vomiting
| | Volume depletion
| | Hypertension
| | Hypokalemia
| Milder Forms | Females: Ambiguous genitalia
| | Males: Precocious puberty |

21-α Hydroxylase Deficiency

Cholesterol
Aldosterone
Cortisol
Androgens

↑ ACTH

17-α Hydroxylase Deficiency

Cholesterol
Aldosterone
Cortisol
Androgens

↑ ACTH
CAH Screening
- Some states screen with newborn blood testing
- Measure level of 17-Hydroxyprogesterone
- Elevated level in 21-α hydroxylase deficiency (most common)

Disorders of Sex Development
- **Ambiguous Genitalia**
 - 46, XX
 - 46, XY
- **Excess Androgens**
 - Often CAH
- **Lack of Androgens**
 - Synthesis/Effect: Rarely due to CAH

17-α Hydroxylase Deficiency
- Males (XY):
 - Female or ambiguous external genitalia
 - Absent uterus/fallopian tubes (Sertoli cells → MIH)
 - Undescended testes
- Females (XX):
 - Normal at birth
 - Primary amenorrhea at puberty
 - Theca cells lack of androgens → ↓ estradiol
 - Often diagnosed at puberty
 - XX female fails to develop
 - XY phenotypic female or male fails to develop
 - Hypertension, low K+ identified

17-β Hydroxysteroid Dehydrogenase Deficiency
- ↑ ACTH
- Cholesterol
- Aldosterone
- Cortisol
- Androgens

17-α Hydroxylase Deficiency
- Low cortisol
- Excess mineralocorticoids: HTN, ↓K+
- Low androgens
 - CYP17A1: adrenal gland and gonads

3-β Hydroxysteroid Dehydrogenase Deficiency
- Low cortisol
- Excess mineralocorticoids: HTN, ↓K+
- Low androgens
- CYP17A1: adrenal gland and gonads

CAH Screening
- Some states screen with newborn blood testing
- Measure level of 17-Hydroxyprogesterone
 - Elevated level in 21-α hydroxylase deficiency (most common)
CAH Treatment

- Many forms treated with glucocorticoids
- Replenishes cortisol
- Lowers ACTH
- Stops overproduction of other hormones
- Can also use mineralocorticoids (fludrocortisone)
Cushing’s Syndrome

- Syndrome of clinical features due to excess cortisol
- Most common cause: corticosteroid medication
 - Often prescribed for inflammatory conditions
 - e.g., daily prednisone for lupus
- Cushing’s disease: Pituitary ACTH-secreting tumor
 - One cause of Cushing’s syndrome

Adrenal Disorders

- Excess cortisol
- Insufficient cortisol
- Excess mineralocorticoids
- Tumors

- Hypertension
- Hyperglycemia
- Diabetes (insulin resistance)
- Immune suppression
 - Risk of infections, especially opportunistic

- Syndrome of clinical features due to excess cortisol
 - Most common cause: corticosteroid medication
 - Often prescribed for inflammatory conditions
 - e.g., daily prednisone for lupus
- Cushing’s disease: Pituitary ACTH-secreting tumor
 - One cause of Cushing’s syndrome
Cushing's Syndrome
Diagnosis
• Low dose dexamethasone suppression test
 • 1mg dexamethasone ("low dose") administered at bedtime
 • Suppresses normal pituitary ACTH release
 • Morning blood test
 • Cortisol level should be low (suppressed)
• Cortisol remains high in Cushing's syndrome
• Adenomas, tumors do not suppress cortisol production

Skin Changes
• Thinning of skin
• Easy bruising
• Striae: Stretch marks
 • Purple lines on skin
 • Fragile skin stretches over trunk, breasts, abdomen
 • Thin skin cannot hide venous blood in dermis
 • Commonly occur on sides and lower abdomen

Cushing's Syndrome
Causes
• ACTH-independent (↓ACTH)
 • Glucocorticoid therapy
 • Adrenal adenoma
• ACTH-dependent (↑ACTH)
 • Cushing's disease (pituitary ACTH secreting tumor)
 • Ectopic ACTH (small cell lung cancer)
 • ↑ACTH → adrenal hyperplasia → ↑cortisol

Cushing’s Syndrome
Causes
• Special note: skin hyperpigmentation
 • Can occur in ACTH-dependent Cushing's syndrome
 • Caused by ↑ ACTH not cortisol
 • ↑ ACTH → ↑ MSH

Cushing’s Syndrome
Causes
• ACTH-independent (↓ACTH)
• Glucocorticoid therapy
• Adrenal adenoma
• ACTH-dependent (↑ACTH)
 • Cushing's disease (pituitary ACTH secreting tumor)
 • Ectopic ACTH (small cell lung cancer)
 • ↑ACTH → adrenal hyperplasia → ↑cortisol

Cushing's Syndrome
Diagnosis
• Measuring plasma cortisol difficult
 • Circadian rhythm → high levels in AM
 • Most cortisol bound to CBG
 • CBG levels can affect serum measurement

Skin Changes
• Thinning of skin
• Easy bruising
• Striae: Stretch marks
• Purple lines on skin
• Fragile skin stretches over trunk, breasts, abdomen
• Thin skin cannot hide venous blood in dermis
• Commonly occur on sides and lower abdomen

Cushing’s Syndrome
Diagnosis
• 24 - hour urine free cortisol
 • Integrates cortisol level over time
• Salivary cortisol
 • No cortisol binding globulin in saliva
 • Free cortisol level measured at night (should be low)

Cushing’s Syndrome
Diagnosis
• Measuring plasma cortisol difficult
 • Circadian rhythm → high levels in AM
 • Most cortisol bound to CBG
 • CBG levels can affect serum measurement

Skin Changes
• Thinning of skin
• Easy bruising
• Striae: Stretch marks
• Purple lines on skin
• Fragile skin stretches over trunk, breasts, abdomen
• Thin skin cannot hide venous blood in dermis
• Commonly occur on sides and lower abdomen

Cushing’s Syndrome
Causes
• Special note: skin hyperpigmentation
 • Can occur in ACTH-dependent Cushing's syndrome
 • Caused by ↑ ACTH not cortisol
 • ↑ ACTH → ↑ MSH

Cushing’s Syndrome
Causes
• ACTH-independent (↓ACTH)
• Glucocorticoid therapy
• Adrenal adenoma
• ACTH-dependent (↑ACTH)
 • Cushing's disease (pituitary ACTH secreting tumor)
 • Ectopic ACTH (small cell lung cancer)
 • ↑ACTH → adrenal hyperplasia → ↑cortisol

Cushing’s Syndrome
Causes
• Special note: skin hyperpigmentation
 • Can occur in ACTH-dependent Cushing's syndrome
 • Caused by ↑ ACTH not cortisol
 • ↑ ACTH → ↑ MSH

Cushing’s Syndrome
Causes
• ACTH-independent (↓ACTH)
• Glucocorticoid therapy
• Adrenal adenoma
• ACTH-dependent (↑ACTH)
 • Cushing's disease (pituitary ACTH secreting tumor)
 • Ectopic ACTH (small cell lung cancer)
 • ↑ACTH → adrenal hyperplasia → ↑cortisol
Adrenal Insufficiency

Symptoms

- Loss of cortisol
 - Weakness, fatigue
 - Weight loss
 - Postural hypotension
 - Nausea, abdominal pain, diarrhea
 - Hypoglycemia
 - Loss of aldosterone
 - Potassium retention → hyperkalemia
 - H+ retention → acidosis
 - Sodium loss in urine → hypovolemia

ACTH-Dependent Causes (High ACTH)	ACTH-Independent Causes (Low ACTH)
Cushing's disease | Steroid therapy
Ectopic ACTH | Adrenal adenoma

Cushing's Syndrome

Diagnosis

- Step 1: Establish Cushing's syndrome
- Step 2: Establish cause
- Key test is serum ACTH level

<table>
<thead>
<tr>
<th>Low Dose</th>
<th>High Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>↓</td>
</tr>
<tr>
<td>Pituitary Adenoma</td>
<td>--</td>
</tr>
<tr>
<td>ACTH Tumor</td>
<td>--</td>
</tr>
</tbody>
</table>

Cushing's Syndrome

Treatment

- **Surgery**
 - Removal of adenoma (adrenal gland, pituitary)
 - Removal of lung tumor
 - Ketoconazole

Ketoconazole

- Antifungal
- Blocks ergosterol synthesis in fungi
- Also blocks 1st step in cortisol synthesis
- Desmolase (side chain cleavage)
- Can be used to treat Cushing's syndrome
- Also potent inhibitor androgen synthesis
- Key side effect: gynecomastia

Adrenal Insufficiency

- Insufficient cortisol production
- **Primary** adrenal insufficiency (Addison's disease)
 - Failure of adrenal gland
 - Cortisol and aldosterone will be low
 - ACTH will be high
- **Secondary** adrenal insufficiency
 - Failure of pituitary ACTH release
 - Only cortisol will be low

High Dose Dexamethasone

- Low dose testing (1mg)
 - Used to establish diagnosis of Cushing's syndrome
- High dose dexamethasone test (8mg)
 - Differentiate causes of high ACTH Cushing's syndrome
 - Will suppress cortisol in pituitary adenomas (↑ set point)
 - Will not suppress cortisol from ACTH tumors

 AM Cortisol After Dexamethasone

<table>
<thead>
<tr>
<th>Low Dose</th>
<th>High Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>↓</td>
</tr>
<tr>
<td>Pituitary Adenoma</td>
<td>--</td>
</tr>
<tr>
<td>ACTH Tumor</td>
<td>--</td>
</tr>
</tbody>
</table>

Cushing's Syndrome

Diagnosis

- Step 1: Establish Cushing's syndrome
- Step 2: Establish cause
- Key test is serum ACTH level

High Dose Dexamethasone

- Low dose testing (1mg)
 - Used to establish diagnosis of Cushing's syndrome
- High dose dexamethasone test (8mg)
 - Differentiate causes of high ACTH Cushing's syndrome
 - Will suppress cortisol in pituitary adenomas (↑ set point)
 - Will not suppress cortisol from ACTH tumors

AM Cortisol After Dexamethasone

<table>
<thead>
<tr>
<th>Low Dose</th>
<th>High Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>↓</td>
</tr>
<tr>
<td>Pituitary Adenoma</td>
<td>--</td>
</tr>
<tr>
<td>ACTH Tumor</td>
<td>--</td>
</tr>
</tbody>
</table>
Waterhouse-Friderichsen Syndrome

- Rare cause of acute adrenal insufficiency
- Caused by acute hemorrhage into adrenal glands
- Associated with meningococcemia
- Clinical scenario:
 - Patient with bacterial meningitis
 - Acute onset of shock

Addison's Hyperpigmentation

- Generalized hyperpigmentation
- Most obvious in sun-exposed areas
 - Face, neck, backs of hands
- Also areas of friction/pressure
 - Elbows, knees, knuckles,
- May occur in palmar creases
- Classic scenario:
 - GI symptoms (nausea, pain)
 - Darkening skin

Addison's Disease

Common Causes

- Autoimmune adrenalitis
 - Antibody and cell-mediated disorder
 - Antibodies to 21-hydroxylase commonly seen
 - Atrophy of adrenal gland
 - Loss of cortex
 - Medulla is spared
- Infections
 - Tuberculosis
 - Fungal (histoplasmosis, cryptococcus)
 - CMV
- Rare: tumor metastasis especially lung

Adrenal Crisis

- Acute adrenal insufficiency
- Abrupt loss of cortisol and aldosterone
- Main manifestation is shock
- Hypoglycemia
- Other symptoms: nausea, vomiting, fatigue, confusion
 - Infection, surgery, trauma in patient with adrenal insufficiency
 - Patients on chronic steroids
 - "Stress dose steroids" for prevention

Metastasis from Lung Cancer

- Adrenals
 - Usually found on imaging without symptoms
- Brain
 - Headache, neuro deficits, seizures
- Bone
 - Pathologic fractures
- Liver
 - Hepatomegaly, jaundice

ACTH Effects

- ACTH is high in primary adrenal insufficiency
- This leads to skin hyperpigmentation
- Melanocyte stimulating hormone (MSH) shares common precursor protein in pituitary with ACTH
 - ↑ melanin synthesis

Addison's Hyperpigmentation

- Generalized hyperpigmentation
- Most obvious in sun-exposed areas
 - Face, neck, backs of hands
- Also areas of friction/pressure
 - Elbows, knees, knuckles
- May occur in palmar creases
- Classic scenario:
 - GI symptoms (nausea, pain)
 - Darkening skin

Waterhouse-Friderichsen Syndrome

- Rare cause of acute adrenal insufficiency
- Caused by acute hemorrhage into adrenal glands
- Associated with meningococcemia
- Clinical scenario:
 - Patient with bacterial meningitis
 - Acute onset of shock
Primary Aldosteronism
Mineralocorticoid Excess
• Hypertension, classically at a young age
• Hypokalemia
• Weakness, muscle cramps
• Unreliable finding → many cases with normal K+
• Metabolic alkalosis

Adrenal Insufficiency
Diagnostic Tests
• ACTH stimulation test ("cosyntropin stim test")
 • Exogenous ACTH administered
 • Cortisol should rise 30-60 minutes later
 • Failure to rise = primary adrenal insufficiency
 • Normal rise = secondary disorder

• 8 AM serum cortisol
 • Levels should be highest at this time
 • Low level indicates disease
• Serum ACTH
 • High ACTH with low cortisol = primary disease
 • Low ACTH with low cortisol = secondary disease

Adrenal Insufficiency
• Most common cause: glucocorticoid therapy
• Chronic suppression ACTH release
• Leads to adrenal atrophy over time
• Sudden discontinuation → hypoadrenalism

2o Adrenal Insufficiency
• No skin findings
• ACTH is not elevated
• No hyperkalemia
• Aldosterone not effected

2o Adrenal Insufficiency
• Basis for "weaning" off steroids
• Slow discontinuation over time
• Basis for "stress dose steroids"
 • Patients on chronic steroids with infection, trauma, surgery
 • Risk of adrenal crisis
 • High dose of glucocorticoids administered

2o Adrenal Insufficiency
• Most common cause: glucocorticoid therapy
• Chronic suppression ACTH release
• Leads to adrenal atrophy over time
• Sudden discontinuation → hypoadrenalism

Adrenal Insufficiency
• Most common cause: glucocorticoid therapy
• Chronic suppression ACTH release
• Leads to adrenal atrophy over time
• Sudden discontinuation → hypoadrenalism

2o Adrenal Insufficiency
Important Points
• No skin findings
• ACTH is not elevated
• No hyperkalemia
• Aldosterone not effected
Primary Aldosteronism

Diagnosis
- Abdominal imaging for adrenal nodules/tumors
- Adrenal vein sampling
 - Differentiates unilateral vs. bilateral disease
 - Measure PAC and PRA in each vein

Treatment
- Surgical adrenalectomy
- Adenomas
- Unilateral hyperplasia
- Spironolactone
 - Drug of choice
 - Potassium-sparing diuretic
 - Blocks aldosterone effects

Primary Aldosteronism

Most common causes
- Bilateral idiopathic hyperaldosteronism (~60%)
- Aldosterone-producing adenoma (~30%)
 - Sometimes called Conn’s syndrome

Diagnosis
- Plasma aldosterone concentration (PAC)
- Plasma renin activity (PRA)
 - Plasma incubated
 - Renin cleaves angiotensinogen in plasma
 - Angiotensin I produced measured by assay
 - ↓ PRA and ↑ PAC = Primary aldosteronism
 - ↑ PRA and ↑ PAC = Secondary aldosteronism
 - Renal artery stenosis, CHF, low volume

Treatment
- Surgical adrenalectomy
- Adenomas
- Unilateral hyperplasia
- Spironolactone
 - Drug of choice
 - Potassium-sparing diuretic
 - Blocks aldosterone effects

Licorice

- Contains glycyrrhetinic acid (a steroid)
 - Weak mineralocorticoid effect
 - Inhibits renal 11-beta-hydroxysteroid dehydrogenase
 - Large amounts Hypertension, hypokalemia
 - Plasma aldosterone level low

Pheochromocytoma

- Catecholamine-secreting tumor
 - Secrete epinephrine, norepinephrine, dopamine
 - Chromaffin cells of adrenal medulla
 - Derivatives of neural crest
Pheochromocytoma

Treatment
• Definitive therapy: Surgery
• Pre-operative management:
 • Phenoxybenzamine (irreversible α-blocker)
 • Non-selective beta blockers (propranolol)

Diagnosis
• Metanephrines often measured for diagnosis
 • Metanephrine and normetanephrine
 • Older test: 24 hour collection of VMA
• Serum catecholamine levels not routinely used
 • Levels fluctuate
 • Some metabolism intratumoral
 • Breakdown products of catecholamines measured
 • Usually via 24 hour urine collection

Clinical presentation
• Classically episodic symptoms
 • Hypertension
 • Headaches
 • Palpitations
 • Sweating
 • Pallor (pale skin)
Adrenal Adenomas
- Often discovered on abdominal imaging
- "Adrenal incidentaloma"
- Concern for malignancy and/or functioning adenoma

MIBG
- Chemical analog of norepinephrine
- Diagnosis of pheochromocytoma & neuroblastoma
- Concentrated in sympathetic tissues
- Labeled with radioactive iodine (I131)
- Will concentrate in tumors → emit radiation
- Special note: thyroid gland must be protected
- Non-radioactive iodine
- Will be taken up by thyroid instead

Neuroblastoma
- Tumor of primitive sympathetic ganglion cells
 - Also derived from neural crest cells
 - Can arise anywhere in sympathetic nervous system
 - Adrenal gland most common (40 percent)
 - Abdominal (25 percent)
 - Thoracic (15 percent)
 - Almost always occurs in children
 - 3rd most common childhood cancer (leukemia, brain tumors)
 - Most common extracranial tumor

Neuroblastoma
- Symptoms related to tumor mass effect
 - Commonly present as abdominal pain
 - Can synthesize catecholamines
 - Rarely cause symptoms like pheochromocytoma
 - Urinary HVA/VMA levels used for diagnosis
 - Rare feature: Opsoclonus-myoclonus-ataxia (OMA)
 - Rapid eye movements, rhythmic jerking, ataxia
 - Half of OMA patients have a neuroblastoma
- Key risk factor: Age at diagnosis
 - Infants with disseminated disease often cured
 - Children over 18 months often die despite therapy
 - Younger age = better prognosis
- N-myc
 - Proto-oncogene
 - Amplified/overexpressed in some tumors
 - Associated with poor prognosis

Paraganglioma
- Catecholamine-secreting tumor
- Arise from sympathetic ganglia (extraadrenal)
- Similar clinical presentation to pheochromocytoma

Neuroblastoma
- Tumor of primitive sympathetic ganglion cells
- Also derived from neural crest cells
- Can arise anywhere in sympathetic nervous system
 - Adrenal gland most common (40 percent)
 - Abdominal (25 percent)
 - Thoracic (15 percent)
- Almost always occurs in children
 - 3rd most common childhood cancer (leukemia, brain tumors)
 - Most common extracranial tumor

Neuroblastoma
- Diverse range of disease progression
- Key risk factor: Age at diagnosis
 - Infants with disseminated disease often cured
 - Children over 18 months often die despite therapy
 - Younger age = better prognosis
- N-myc
 - Proto-oncogene
 - Amplified/overexpressed in some tumors
 - Associated with poor prognosis

Paraganglioma
- Catecholamine-secreting tumor
- Arise from sympathetic ganglia (extraadrenal)
- Similar clinical presentation to pheochromocytoma

Neuroblastoma
- Diverse range of disease progression
- Key risk factor: Age at diagnosis
 - Infants with disseminated disease often cured
 - Children over 18 months often die despite therapy
 - Younger age = better prognosis
- N-myc
 - Proto-oncogene
 - Amplified/overexpressed in some tumors
 - Associated with poor prognosis
Adrenal Adenomas

- May secrete cortisol or aldosterone
- Common functional tests
 - 24 hour urine metanephrines (pheochromocytoma)
 - 24 hour urine free cortisol (Cushing's)
 - Low dose dexamethasone suppression (Cushing's)
 - Serum PRA/aldosterone (aldosteronism)
- Often followed for growth over time (non-functional)
- Large (>5cm) often removed
Endocrine Pancreas

Insulin Release

Pancreatic Islets
Islets of Langerhans
- Millions of islets found in pancreatic tissue
- Endocrine portion of pancreas
- Beta cells: Insulin
 - Most abundant cell type
 - Centrally located
- Alpha cells: Glucagon
- Delta cells: Somatostatin
- Alpha/delta cells: Outer islet

Insulin
- Protein hormone
- Synthesized by beta cells
- Synthesized as preproinsulin
 - Made by ribosomes of rough endoplasmic reticulum
- Preproinsulin cleaved to proinsulin
 - Transported to Golgi apparatus
- Packaged into secretory granules
 - Proinsulin cleaved to insulin and C-peptide in granules

Insulin Structure
- Alpha chain
- Beta chain
- Disulfide bridges
- C-peptide
 - "Connecting" peptide
 - Long half-life
 - Indicator insulin production

Insulin Release
- Produced in response to: glucose, amino acids

GLUT-2 and Glucokinase
Both in liver/pancreas

Endocrine Pancreas
Jason Ryan, MD, MPH
Insulin Release

- Production **inhibited by epinephrine**
 - Beta-2 receptors: ↑ insulin
 - Alpha-2 receptors: ↓ insulin release
 - Alpha effect is dominant effect in pancreas
 - Fight or flight response → ↑ plasma glucose

Glucokinase

- Beta cell enzyme
 - 1st step of glycolysis
 - Found in liver and pancreas
 - Induced by insulin
 - Insulin promotes transcription
 - High Km (rate varies with glucose)
 - High Vm (can convert lots of glucose)

GLUT-2 Transporter

- Bidirectional glucose transporter
 - Found in liver, kidney, beta cells
 - Liver, kidney: Gluconeogenesis
 - Beta cells: Glucose in/out based on plasma levels
 - Also found in intestine, other tissues

Insulin Release

- Production inhibited by epinephrine
 - Beta-2 receptors: ↑ insulin
 - Alpha-2 receptors: ↓ insulin release
 - Alpha effect is dominant effect in pancreas
 - Fight or flight response → ↑ plasma glucose
Insulin Receptor

- Ty Ty P P

PIK3 Pathway

Phosphatidylinositol 3-kinase Pathway

- Catalyzes many intracellular processes
 - Glycogen formation
 - Fatty acid synthesis
 - GLUT-4 glucose transporter

GLUT-4 Transporter

- Stored in vesicles in cells, especially muscle
- Insulin → PIK3 pathway → GLUT-4 Activation
- Major mechanism for increased glucose uptake
- Important muscle/fat
- Insulin exposure → GLUT-4 on surface

RAS/MAP Kinase Pathway

- Insulin receptor can activate RAS
 - G protein
- RAS can activate many growth pathways
 - Raf
 - MEK (mitogen-activated extracellular kinase)
 - MAP (mitogen-activated protein)
- Modify cell growth and gene expression
Insulin Dependent Organs
• Muscle and fat
 • Use GLUT-4 for glucose uptake
 • Depend on insulin (no insulin = no GLUT-4)

Insulin Effects
• Fatty acid synthesis
 • Activates acetyl-CoA carboxylase
 • Inhibits hormone sensitive lipase
• Protein synthesis
 • Stimulates entry of amino acids into cells → protein synthesis
 • Important for muscle growth
• Key side effect insulin therapy: weight gain

Hormone Sensitive Lipase
• Removes fatty acids from TAG in adipocytes
• Inhibited by insulin
• Activated by glucagon and epinephrine

Insulin Independent Organs
• Brain and RBCs
 • Use GLUT-1 for glucose uptake
 • Not dependent on insulin
 • Takes up glucose when available
 • RBCs: No mitochondria (depend on glycolysis)
 • Brain: No fatty acid metabolism (glucose/ketones)
• Liver, kidney, intestines
 • Also insulin independent (GLUT-2)
• Other organs: nerves, lens

Insulin Receptor
Key Points
• Tetramer of α/β subunits with disulfide bridges
 • α: extracellular
 • β: transmembrane
• Insulin binding → tyrosine kinase activity
• Autophosphorylation of tyrosine residues
• PI3K Pathway → GLUT-4 glucose transporter
• RAS/MAP Kinase Pathway: growth/gene transcription

Insulin Effects
• Glucose uptake (skeletal muscle, adipose tissue)
 • Glycogen synthesis
 • Activates glycogen synthase
 • Inhibits glycogen phosphorylase
 • Inhibits gluconeogenesis
 • ↑ Fructose-2,6-bisphosphate levels
 • Inhibit Fructose 1,6 bisphosphatase 1

Insulin Dependent Organs
• Muscle and fat
 • Use GLUT-4 for glucose uptake
 • Depend on insulin (no insulin = no GLUT-4)
Glucagon Receptor
- G-protein receptor
- Activates adenylyl cyclase
- Increases cAMP
- Activates protein kinase A (PKA)

Glucagon
- Protein hormone
- Single polypeptide chain
- Synthesized by alpha cells
- Opposes actions of insulin
- Main stimulus release: low plasma glucose

Glucagon
- Increases amino acid uptake in liver
 - More carbon skeletons for glucose via gluconeogenesis
 - Plasma amino acid levels fall
 - Activates lipolysis via hormone sensitive lipase

Glucagon
- Increases liver (not muscle) glycogen breakdown
 - Raises blood glucose level
 - Increases gluconeogenesis

Glucagon
- Protein hormone
- Single polypeptide chain
- Synthesized by alpha cells
- Opposes actions of insulin
- Main stimulus release: low plasma glucose

Insulin
- Na⁺ retention
 - Increases Na⁺ resorption in the nephron
- Lowers potassium
 - Enhanced activity of Na-K-ATPase pump in skeletal muscle
 - Insulin plus glucose used in treatment of hyperkalemia
 - Inhibits glucagon release

Insulin Effects
- Na⁺ retention
 - Increases Na⁺ resorption in the nephron
- Lowers potassium
 - Enhanced activity of Na-K-ATPase pump in skeletal muscle
 - Insulin plus glucose used in treatment of hyperkalemia
 - Inhibits glucagon release

Insulin Effects
- Na⁺ retention
 - Increases Na⁺ resorption in the nephron
- Lowers potassium
 - Enhanced activity of Na-K-ATPase pump in skeletal muscle
 - Insulin plus glucose used in treatment of hyperkalemia
 - Inhibits glucagon release

Insulin Effects
- Na⁺ retention
 - Increases Na⁺ resorption in the nephron
- Lowers potassium
 - Enhanced activity of Na-K-ATPase pump in skeletal muscle
 - Insulin plus glucose used in treatment of hyperkalemia
 - Inhibits glucagon release

Insulin Effects
- Na⁺ retention
 - Increases Na⁺ resorption in the nephron
- Lowers potassium
 - Enhanced activity of Na-K-ATPase pump in skeletal muscle
 - Insulin plus glucose used in treatment of hyperkalemia
 - Inhibits glucagon release
Hypoglycemia
- Uconscous patient with hypoglycemia
- Treatment:
 - #1: IV dextrose
 - #2: Intramuscular glucagon
- Useful when IV access cannot be established
- Raises plasma glucose level

Beta Blocker Overdose
- Causes bradycardia and hypotension
- Drug of choice: **Glucagon**
 - Activates adenyl cyclase
 - Different site from beta-adrenergic agents
 - Raises cAMP →↑ myocyte calcium
 - Same mechanism as beta stimulation (via Gs proteins)

Insulinoma
- Rare, pancreatic islet-cell tumor
- Occurs in adults (median age ~50 years)
- Key feature: fasting hypoglycemia
 - Insulin levels remain elevated when fasting
- "Neuroglycopenic symptoms"
 - Confusion, odd behavior
 - Sympathetic activation from low glucose
 - Palpitations, diaphoresis, tremor

Insulinoma
- Diagnosis: fasting insulin level
- Also elevated
 - C-peptide
 - Proinsulin
- Need to exclude exogenous insulin administration

Fasting Hypoglycemia
- Differential diagnosis
 - Exogenous insulin
 - Oral hypoglycemics (sulfonylureas →↑ insulin)
 - Insulinoma

<table>
<thead>
<tr>
<th>Differential Diagnosis</th>
<th>Exogenous Insulin</th>
<th>Insulinoma</th>
<th>Oral Hypoglycemics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C-peptide</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Hypoglycemic Agent Screen</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Glucagonoma
- Rare pancreatic tumors
- Excess glucagon secretion
- Leads to glucose intolerance
 - Elevated fasting glucose levels
 - Rare to develop DKA (insulin function intact)
Glucagonoma

- **Weight loss**
 - Liver gluconeogenesis
 - Consumption of proteins/amino acids

- **Diagnosis:** ↑ plasma glucagon level
- **Treatment:** somatostatin analogs (octreotide)
 - Inhibit glucagon secretion
 - Improves symptoms

Glucagonoma

- **Necrolytic migratory erythema**
 - Red, blistering rash
 - Itchy, painful
 - Fluctuates in severity
 - **Genitals, buttocks, groin**
 - Key clinical scenario: new diabetes and rash

MEN Syndromes

- **Multiple endocrine neoplasia**
- **Rare inherited disorders**
- **Numerous endocrine tumors**
 - **MEN Type 1:** Insulinomas/glucagonomas
 - 3 P’s: Pituitary, Parathyroid, and Pancreas
 - Mutations of MEN1 tumor suppressor gene

- **Glucagonoma**
- **Weight loss**
- **Necrolytic migratory erythema**
- **Glucagonoma**
- **Weight loss**
- **Liver gluconeogenesis**
- **Consumption of proteins/amino acids**

- **Diagnosis:** ↑ plasma glucagon level
- **Treatment:** somatostatin analogs (octreotide)
 - Inhibit glucagon secretion
 - Improves symptoms

- **Glucagonoma**
- **Necrolytic migratory erythema**
 - Red, blistering rash
 - Itchy, painful
 - Fluctuates in severity
 - **Genitals, buttocks, groin**
 - Key clinical scenario: new diabetes and rash

- **Glucagonoma**
- **Weight loss**
- **Liver gluconeogenesis**
- **Consumption of proteins/amino acids**
Diabetes

Hemoglobin A1C
- Small fraction of hemoglobin is "glycated"
- Glucose combines with alpha/beta chains
- Subfraction HbA1c used in diabetes
- Non-enzymatic glycation of beta-chains
- Occurs at amino-terminal valines

Diabetes Symptoms
- Often asymptomatic
- "Silent killer"
- Often no symptoms until complications develop
- Basis for screening
- Classic hyperglycemia symptoms
 - Polyuria (osmotic diuresis from glucose)
 - Polydipsia (thirst to replace lost fluids)

Terminology
- Diabetes Mellitus
 - Mellitus = sweet
 - Common disorder of blood glucose
- Diabetes insipidus
 - Insipid = lacking flavor
 - Rare disorder of low ADH activity
- Both can cause polyuria, polydipsia
- Completely different mechanisms

Diabetes Diagnosis
- Symptoms
 - Symptoms plus glucose >200mg/dl = diabetes
- Asymptomatic
 - Fasting blood glucose level (no food for 8 hours)

<table>
<thead>
<tr>
<th>State</th>
<th>Fasting plasma glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><100mg/dl</td>
</tr>
<tr>
<td>Prediabetes</td>
<td>100 to 125mg/dl</td>
</tr>
<tr>
<td>Diabetes</td>
<td>>=126mg/dl</td>
</tr>
</tbody>
</table>

Hemoglobin A1C
- Small fraction of hemoglobin is "glycated"
- Glucose combines with alpha/beta chains
- Subfraction HbA1c used in diabetes
- Non-enzymatic glycation of beta-chains
- Occurs at amino-terminal valines
Diabetic Ketoacidosis (DKA)

- Life-threatening complication of diabetes
- More common type 1
- Common initial presentation type 1
- Often precipitated by infection/trauma
- Can occur when type 1 diabetic skips insulin therapy

Type 1 Diabetes

- Autoimmune disorder
- Type IV hypersensitivity reaction
- T-cell mediated destruction of beta cells
- Inflammation of islets
- Lymphocytes on biopsy ("Insulitis")
- Decreased number of beta cells
- Loss of insulin
- Associated with HLA-DR3 and HLA-DR4
- Autoantibodies may be present
 - Islet-cell antibodies
 - Insulin antibodies

Glucose Tolerance Test

- Oral glucose load administered
- Plasma glucose measured 1-3 hours later
- High glucose indicates diabetes
- Often used to screen for gestational diabetes
 - Some insulin resistance normal in pregnancy
 - Need to study response to glucose load for diagnosis

Hemoglobin A1C

- Reflects average glucose over past 3 months
 - Normal < 5.7%
 - Pre-diabetes: 5.7 to 6.4%
 - Diabetes: >=6.5%
- Sometimes used for diagnosis
- Important for monitoring therapy
 - Higher value = worse control of blood sugar

Type 1 Diabetes

- Mostly a childhood disorder
 - Bimodal distribution
 - Peak at 4-6 years
 - 2nd peak 10 to 14 years of age
 - Often presents with symptomatic hyperglycemia
 - Polyuria
 - Polydipsia
 - Glucose in urine
- Treatment: Insulin
Diabetic Ketoacidosis

Clinical Presentation

- Abdominal pain / nausea / vomiting
- Dehydration
- Hyperglycemia
- Hyperkalemia
- Elevated plasma / urine ketones
- Glucose in urine
- Anion gap metabolic acidosis
 - Kussmaul breathing: deep, labored breathing
 - Hyperventilation to blow off CO2 and raise pH
- Fruity smell on breath

Diabetic Ketoacidosis

DKA

- Low insulin / high epinephrine
- High fatty acid utilization
- Oxaloacetate depleted \(\rightarrow \) TCA cycle stalls
- \(\text{Acetyl-CoA} \)
- Ketone production

Phosphate

- Risk of hypophosphatemia
 - Acidosis \(\rightarrow \) shifts phosphate to extracellular fluid
 - Phosphaturia caused by osmotic diuresis
- Loss of ATP
 - Muscle weakness (respiratory failure)
 - Heart failure (↓ contractility)

Mucormycosis

- Fungal infection
- Caused by *Rhizopus* sp. and *Mucor* sp.
- Classically starts in sinuses
- Spreads to adjacent structures
- Thrives in high glucose, ketoacidosis conditions
- Classic complication of DKA
 - Patient with DKA
 - Fever, headache, eye pain

Diabetic Ketoacidosis

Treatment

- Insulin
 - Lowers blood glucose levels
 - Shifts potassium into cells
- IV fluids
 - Treats dehydration

Image courtesy of Yale Rose / Flickr

Image courtesy of *Han Z* / *Wikipedia*

Image courtesy of *Wikipedia*
Type 2 Diabetes

Risk Factors

- Major risk factor: **Obesity**
 - Central or abdominal obesity carries greatest risk
 - Intra-abdominal (visceral) fat > subcutaneous fat
 - Visceral fat breakdown less inhibited by insulin
 - More lipolysis → more free fatty acids
 - Decreased glucose transport into cells
- "Apple shape" worse than "pear shape"
 - Apple shape due to increased visceral adipose tissue
 - More subcutaneous adipose tissue in pear shape
- Weight loss improves glucose levels

Type 2 Diabetes

Risk Factors

- Family history
 - Strong genetic component (more than type I)
 - Any first degree relative with T2DM: ↑ 2-3x risk

Type 2 Diabetes

Risk Factors

- Insulin resistance
 - Muscle, adipose tissue, liver
 - Reduced response to insulin → hyperglycemia
 - Pancreas responds with ↑ insulin
 - Eventually pancreas can fail → ↓ insulin

Type 2 Diabetes

Risk Factors

- Family history
 - Strong genetic component (more than type I)
 - Any first degree relative with T2DM: ↑ 2-3x risk

Diabetic Ketoacidosis

Treatment

- Careful monitoring **potassium**
 - Total body potassium is low despite hyperkalemia
 - Insulin shifts into cells → can lead to hypokalemia
 - Usually need to administer potassium
- Careful monitoring glucose
 - Continue insulin until acidosis resolves
 - Often add glucose while insulin infusion continues

Diabetic Ketoacidosis

Treatment

- Careful monitoring potassium
 - Total body potassium is low despite hyperkalemia
 - Insulin shifts into cells → can lead to hypokalemia
 - Usually need to administer potassium
- Careful monitoring glucose
 - Continue insulin until acidosis resolves
 - Often add glucose while insulin infusion continues

Diabetic Ketoacidosis

Treatment

- Careful monitoring potassium
 - Total body potassium is low despite hyperkalemia
 - Insulin shifts into cells → can lead to hypokalemia
 - Usually need to administer potassium
- Careful monitoring glucose
 - Continue insulin until acidosis resolves
 - Often add glucose while insulin infusion continues

Diabetic Ketoacidosis

Treatment

- Careful monitoring potassium
 - Total body potassium is low despite hyperkalemia
 - Insulin shifts into cells → can lead to hypokalemia
 - Usually need to administer potassium
- Careful monitoring glucose
 - Continue insulin until acidosis resolves
 - Often add glucose while insulin infusion continues

Diabetic Ketoacidosis

Treatment

- Careful monitoring potassium
 - Total body potassium is low despite hyperkalemia
 - Insulin shifts into cells → can lead to hypokalemia
 - Usually need to administer potassium
- Careful monitoring glucose
 - Continue insulin until acidosis resolves
 - Often add glucose while insulin infusion continues
Diabetic Complications

- Chronic hyperglycemia → complications
 - Cardiac disease
 - Renal failure
 - Neuropathy
 - Blindness
- Two key underlying mechanisms
 - Non-enzymatic glycation
 - Sorbitol accumulation

Type 2 Diabetes

- Insulin Resistance Mechanism
 - Reason for insulin resistance not known
 - Many data suggest insulin receptor abnormalities
 - Fatty acids may activate serine-threonine kinases
 - Phosphorylate amino acids on beta chain of insulin receptors
 - Inhibiting tyrosine phosphorylation
 - ↑ TNF-α may be synthesized by adipocytes
 - TNF-α can activate serine-threonine kinases
 - Amylin peptide normally made by beta cells
 - Precise function not known
 - Packaged and secreted with insulin
 - Pramlintide: amylin analog used for diabetes treatment
 - Accumulates in islets in patients with type 2 diabetes

HHS

- Hyperglycemic Hyperosmolar Syndrome
 - Life-threatening complication of diabetes
 - More common type 2
 - High glucose → diuresis
 - Markedly elevated glucose (can be >1000)
 - Severe dehydration
 - Different from DKA
 - Few or no ketone bodies (insulin present)
 - Usually no acidosis
 - Very high serum osmolality → CNS dysfunction

Acanthosis Nigricans

- Hyperpigmented plaques on skin
- Intertriginous sites (folds)
 - Classically neck and axillae
 - Associated with insulin resistance
 - Often seen obesity, diabetes
 - Rarely associated with malignancy
 - Gastric adenocarcinoma most common
Non-enzymatic Glycation

- Glucose added to amino groups on proteins
- No enzyme required
- Driven by high glucose levels
- Leads to crosslinked proteins
- "Advanced glycation end products" (AGEs)

Atherosclerosis

Diabetic Macroangiopathy

- AGEs trap LDL in large vessels → atherosclerosis
- **Coronary artery disease**
 - Angina, myocardial infarction
- **Stroke/TIA**
- **Peripheral vascular disease**
 - Claudication
 - Arterial ulcers
 - Poor wound healing
 - Gangrene

Diabetic Kidney Disease

Diabetic Microangiopathy

- AGEs → damage to glomerulus and arterioles
- Leads to end stage kidney disease in many diabetics

Renal Arterioles

- Hyaline arteriosclerosis
 - Thickening of arterioles
 - Also seen in HTN
 - Can result from AGEs
 - Crosslinking of collagen
 - Commonly occurs in kidneys of diabetics
 - Can involve afferent AND efferent arteriole
 - Afferent arteriole: Ischemia
 - Efferent arteriole: Hyperfiltration
 - Efferent arteriosclerosis rarely seen except in diabetes

Proteinuria in Diabetics

- Annual screening for albumin in urine
- Evidence of protein is indication for **ACE-inhibitor**
- ACEi shown to reduce progression to ESRD
 - Potential mechanism is dilation of efferent arteriole
 - Reduction in hyperfiltration
Glomerular Basement Membranes
- AGEs → diffuse *basement membrane thickening*
- Visible on electron microscopy
- Can lead to mesangial proliferation in glomeruli
- End result is *glomerulosclerosis*

Kimmelstiel-Wilson Nodules
- *Hallmark of nodular sclerosis of diabetes*
- *Pathognomonic of diabetic kidney disease*

Polyol Pathway
- Little activity at physiologic glucose levels
- Chronic hyperglycemia can lead to ↑ sorbitol
- Sorbitol is osmotic agent
- Draws in fluid → *osmotic damage*
- Likely involved in many diabetic complications
 - Cataracts
 - Neuropathy

Sorbitol Accumulation

Glomerulosclerosis
- Diffuse *glomerulosclerosis*
 - Deposits of proteins (collagen IV)
 - Diffusely on basement membranes of glomeruli capillary loops
 - Mesangial cell proliferation
 - Also occurs with aging and hypertension
 - If severe → nephrotic syndrome
- *Nodular glomerulosclerosis*
 - Nodules form in periphery of glomerulus in mesangium
 - Rarely occurs except in diabetes
 - Can lead to fibrosis/scarring of entire kidney

Glomerular Basement Membranes
- AGEs → diffuse *basement membrane thickening*
- Visible on electron microscopy
- Can lead to mesangial proliferation in glomeruli
- End result is *glomerulosclerosis*

Kimmelstiel-Wilson Nodules
- *Hallmark of nodular sclerosis of diabetes*
- *Pathognomonic of diabetic kidney disease*

Polyol Pathway
- Little activity at physiologic glucose levels
- Chronic hyperglycemia can lead to ↑ sorbitol
- Sorbitol is osmotic agent
- Draws in fluid → *osmotic damage*
- Likely involved in many diabetic complications
 - Cataracts
 - Neuropathy

Cataracts
- Sorbitol accumulates in *lens*
- ↑ osmolarity
- Fluid into lens
- Opacification over time
Diabetes Complications

- Non-enzymatic Glycation
- Sorbitol Accumulation

Non-enzymatic Glycation
- Atherosclerosis
- Diabetic Kidney Disease
- Retinopathy
- Neuropathy

Sorbitol Accumulation
- Cataracts

Diabetic Retinopathy

- Can cause blindness among diabetics
- Multiple factors likely involved:
 - Capillary basement membrane thickening (AGEs)
 - Hyaline arteriosclerosis
- Pericyte degeneration
 - Cells that wrap capillaries
 - Evidence of sorbitol accumulation
- Microaneurysms
- Rupture → hemorrhage
- Annual screening for prevention

Neuropathy

- Classically causes "stocking-glove" sensory loss
 - Longest axons affected most
 - Often feet/legs
 - Worse distally; better proximally
- Loss of vibration sense, proprioception
 - Impairment of pain, light touch, temperature
- Autonomic neuropathy
 - Postural hypotension
 - Delayed gastric emptying

Diabetic Retinopathy

Findings

- Microaneurysms, Hemorrhages
 - Loss of pericytes
 - Excavates
- Leakage proteins, lipids
- Cotton-wool spots
 - Nerve infarctions
 - Occlusion of precapillary arterioles
- Vessel proliferation ("proliferative retinopathy")
 - Retinal ischemia → new vessel growth
 - "Neovascularization"

Neuropathy

- Sorbitol can accumulate in Schwann cells
 - Myelinating cells of peripheral nerves
 - Osmotic damage → neuropathy

Diabetic Foot Disease

- Neuropathy + ischemia can lead to:
 - Ulcers
 - Infection
 - Amputation
 - Made worse by poor wound healing from PVD
 - Prevention: Regular foot exams
 - Ulcer treatment:
 - Wound management
 - Sometimes antibiotics
 - Hyperbaric oxygen chamber

Neuropathy

- Classically causes "stocking-glove" sensory loss
 - Longest axons affected most
 - Often feet/legs
 - Worse distally; better proximally
- Loss of vibration sense, proprioception
 - Impairment of pain, light touch, temperature
- Autonomic neuropathy
 - Postural hypotension
 - Delayed gastric emptying

Neuropathy

- Sorbitol can accumulate in Schwann cells
 - Myelinating cells of peripheral nerves
 - Osmotic damage → neuropathy

Diabetic Retinopathy

Findings

- Microaneurysms, Hemorrhages
 - Loss of pericytes
 - Excavates
- Leakage proteins, lipids
- Cotton-wool spots
 - Nerve infarctions
 - Occlusion of precapillary arterioles
- Vessel proliferation ("proliferative retinopathy")
 - Retinal ischemia → new vessel growth
 - "Neovascularization"
Type 1 versus Type 2

<table>
<thead>
<tr>
<th></th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology</td>
<td>Loss of insulin</td>
<td>Insulin Resistance</td>
</tr>
<tr>
<td>Insulin</td>
<td>Low</td>
<td>High then low</td>
</tr>
<tr>
<td>Biopsy</td>
<td>InsulinLv</td>
<td>Amyloid</td>
</tr>
<tr>
<td>Age</td>
<td>Children</td>
<td>Adults</td>
</tr>
<tr>
<td>Genetic Predisposition</td>
<td>Weaker</td>
<td>Stronger</td>
</tr>
<tr>
<td>Complications</td>
<td>DKA</td>
<td>HRS</td>
</tr>
</tbody>
</table>
Insulin

Type 1 and Type 2
- Type 1 diabetes treated mainly with **insulin**
- Type 2 diabetes: oral or SQ drugs +/- insulin
 - Initial stages: Oral and/or SQ drugs
 - Advanced disease: Insulin

Insulin Hexamers
- Insulin forms **hexamers** in the body
 - Six insulin molecules linked
 - Stable structure
 - Insulin usually administered **subcutaneously**
 - Activity related to speed of absorption
 - Insulin hexamers → slower onset of action
 - Insulin monomers → faster onset of action

Rapid Acting Insulin
- Modified human insulin
- Contain insulin with modified amino acids
- **Reduced hexamer/polymer formation**
- Rapid absorption, faster action, shorter duration
 - Onset: 15 minutes
 - Peak: 1 hour
 - Duration: 2 to 4 hours
- Often used **pre-meal**

Insulin
- Many different types available for diabetes therapy
- All vary by **time to peak** and duration of action
- Also vary by peak effect

- **Rapid Acting Insulin**
- Regular Insulin
- NPH Insulin
- Detemir
- Glargine

- **Fast Peak**
- **Short Duration**

- **Slow Peak**
- **Long Duration**

Insulin
- Jason Ryan, MD, MPH
Regular Insulin

- Synthetic analog of **human insulin**
- Made by recombinant DNA techniques
- Onset: 30 minutes
- Peak: 2 to 3 hours
- Duration: 3 to 6 hours

Regular Insulin

- Commonly used in hospitalized patients
 - Blood sugar elevations common with infection/surgery
 - Sliding scale dose given based on finger stick blood sugar
 - “Regular insulin sliding scale”
- Only type of insulin that is given IV
- IV regular insulin used in **DKA/HHS**
- Used to treat **hyperkalemia**
 - Given IV with glucose to prevent hypoglycemia

Insulin

- **Glargine**
 - Insulin with modified amino acid structure
 - Soluble in acidic solution for dosing
 - Precipitates at body pH after SQ injection
 - Insulin molecules slowly dissolve from crystals
 - Low, continuous level of insulin
 - Onset: 1–1.5 hours
 - Duration: 11–24 hours
 - Often given **once daily**

NPH Insulin

- *Neutral Protamine Hagedorn*
 - Regular insulin combined with **neutral protamine**
 - Slows absorption
 - Peak: 4–8 hours
 - Duration: 12–16 hours
Hypoglycemia
- Major side effect of all insulin regimens
- Tremor, palpitations, sweating, anxiety
- If severe: seizure, coma
- Always check blood sugar in unconscious patients
- Dosages, frequency adjusted to avoid low glucose

Insulin Analogs
- Do not contain human insulin molecules
 - Modified insulin structure
 - Rapid acting, Detemir, Glargine
- Regular insulin, NPH
 - Contain human insulin molecules
 - Regular: made by recombinant techniques
 - NPH: Regular added to neutral protamine to slow absorption

Insulin
- Rapid-acting
 - Pre-meal
- Regular
 - Sliding scale
 - IV for treatment of DKA, hyperkalemia
- NPH, Glargine, Detemir
 - Often given as background therapy

Detemir
- Insulin with fatty acid side chain added
- Slow rate of absorption
 - Aggregation in subcutaneous tissue
 - Also binds reversibly to albumin
- Onset: 1–2 hours
- Duration: > 12 hours
- Usually given once or twice daily
- May cause less weight gain

Insulin
- Rapid-acting
 - Pre-meal
- Regular
 - Sliding scale
 - IV for treatment of DKA, hyperkalemia
- NPH, Glargine, Detemir
 - Often given as background therapy
Weight Gain

- Occurs in most patients on insulin
- Insulin promotes fatty acid and protein synthesis
Treatment of Diabetes

Type 1 and Type 2
- Type 1 diabetes treated mainly with **insulin**
- Type 2 diabetes: **oral or SQ drugs +/- insulin**
 - Initial stages: Oral and/or SQ drugs
 - Advanced disease: Insulin

Lifestyle Modifications
- Newly diagnosed type 2 diabetes
 - **Weight loss, exercise** improve glucose levels
 - First line treatment usually lifestyle modification
 - Usually a 3-6 month trial if initial A1c not markedly ↑

Hemoglobin A1C
- Used to monitor therapy
- Too high = ↑ complications
- Too low = Risk of hypoglycemia
- Goal of ≤7.0% often used in many patients

Oral/SQ Antidiabetic Agents
- Biguanides (Metformin)
- Sulfonylureas/Meglitinides
- Glitazones
- Glucosidase Inhibitors
- Amylin Analogs
- GIP-1 Analogs
- DPP-4 Inhibitors
- SGLT2 inhibitors

Biguanides
- **Metformin**
 - Oral therapy
 - Exact mechanism unknown
 - Primary effect: ↓ hepatic glucose production
 - Inhibits gluconeogenesis
Biguanides
Metformin
• Most common adverse effect is GI upset
 • Nausea, abdominal pain
 • Can cause a metallic taste in the mouth
• Usually 1st line in type 2 diabetes
 • Associated with weight loss
 • Rarely causes hypoglycemia (unlike insulin/sulfonylureas)
 • Does not depend on beta cells
 • Can be given to patients with advanced diabetes

Biguanides
Metformin
• Other effects
 • Reduced glucose absorption from GI tract
 • Direct stimulation of glycolysis in tissues → ↑ glucose uptake
 • Reduced glucagon levels
 • Leads to ↑ insulin effect (insulin sensitivity)
 • Insulin levels fall slightly on therapy

Biguanides
Metformin
• Lowers serum free fatty acids
 • ↓ substrates for gluconeogenesis
 • ↓ triglycerides
 • Small ↓ LDL
 • Small ↑ HDL

Biguanides
Metformin
• Rarely can cause lactic acidosis
 • Exact mechanism unclear/controversial
 • Metformin can increase conversion of glucose to lactate
 • Beneficial for lowering glucose levels
 • Too much → lactic acidosis
 • Can be life threatening
Meglitinides
Repaglinide, Nateglinide
• Oral therapy
• Different chemical structure from sulfonylureas
• Similar mechanism
• Close K⁺ channels in beta cells → ↑ insulin secretion
• Short acting
• Given prior to meals
• Major side effect is hypoglycemia
• No sulfur → can be used in sulfa allergy

Sulfonylureas
• Bind to sulfonylurea receptor in pancreas
• Associated with ATP-dependent K⁺ channel in beta cells
• Sulfonylureas close K⁺ channels in beta cells
• Changes resting potential
• Results in depolarization (Ca influx)
• More sensitive to glucose/amino acids
• ↑ insulin release (“insulin secretagogues”)

Sulfonylureas Adverse Effects
• Hypoglycemia is the most common side effect
• Glucagon levels fall (unclear mechanism)
• May occur with exercise or skipping meals

Sulfonylureas
• Oral drugs
• Each generation more potent
• ↓ dosage used → ↓ side effects
• First generation
 • Tolbutamide, Chlorpropamide, Tolazamide
• Second generation
 • Glyburide, glipizide
• 3rd generation: Glimepiride

Sulfonylureas Adverse Effects
• Can also cause weight gain
• More insulin release
• Insulin causes weight gain

Meglitinides
Repaglinide, Nateglinide
• Oral therapy
• Different chemical structure from sulfonylureas
• Similar mechanism
• Close K⁺ channels in beta cells → ↑ insulin secretion
• Short acting
• Given prior to meals
• Major side effect is hypoglycemia
• No sulfur → can be used in sulfa allergy

Wikipedia/Public Domain
Sulfonylureas Adverse Effects
• Can also cause weight gain
• More insulin release
• Insulin causes weight gain
Glucosidase Inhibitors
Acarbose, Miglitol, Voglibose
- Competitive inhibitors of intestinal α-glucosidases
- Sucrase, maltase, glucoamylase, dextranase
- Enzymes of brush border of intestinal cells
- Hydrolyze starches, oligosaccharides, disaccharides
- Slows absorption of glucose
- Less absorption upper small intestine
- More in distal small intestine

Thiazolidinediones (TZDs)
Pioglitazone, Rosiglitazone
- Oral therapy
- Decreases insulin resistance

Thiazolidinediones
Potential mechanisms
- GLUT-4
 - Glucose transporter
 - Transcription upregulated
- Adiponectin
 - Adipocyte secretory protein
 - \uparrow insulin sensitivity via several mechanisms
 - Signaling may lead to improved glucose levels
- Antagonism of TNF alpha insulin resistance
 - TNF-α levels fall

Thiazolidinediones
Adverse Effects
- Weight gain
 - May cause proliferation of adipocytes
 - Also lead to fluid retention
 - Risk of hepatotoxicity
 - Troglitazone removed from market due to liver failure

Thiazolidinediones
(TZDs)
Pioglitazone, Rosiglitazone
- Act on PPAR-γ receptors
 - Nuclear receptor
 - Highest levels in adipose tissue
 - Also found in muscle, liver, other tissues
 - Modulate expression of genes
 - TZDs bind PPAR-gamma
 - TZD-PPAR bind retinoid X receptors (RXR)
 - Complex modifies gene transcription

NOTE: Fibrates activate PPAR-α
Lower triglycerides

Thiazolidinediones
Adverse Effects
- Edema
 - Occurs in ~5% patients
 - Due to PPAR-γ effects in nephron \rightarrow \uparrow Na retention
 - Risk of pulmonary edema
 - Not used in patients with advanced heart failure

Thiazolidinediones
Oral therapy
- Decreases insulin resistance
DPP-4 Inhibitors
Sitagliptin, Linagliptin
- **DPP-4**: Dipeptidyl peptidase 4
- Enzyme expressed on many cells
- Inhibits release of GIP and GLP-1
- Inhibition → ↑ GLP-1
- Oral drugs, once a day
- Side effects: Infections
 - Reports of urinary and respiratory infections

GLP-1 Analogs
Exenatide, Liraglutide
- **Exenatide**: Usually given SQ prior to meals
 - Once weekly version available
- **Liraglutide**: SQ once daily
- GI side effects: Nausea, vomiting, diarrhea

Amylin Analogs
Pramlintide
- **Amylin**: protein stored in beta cells
- Co-secreted with insulin
- Several effects (mechanisms poorly understood)
 - Suppresses glucagon release
 - Delays gastric emptying
 - Reduces appetite
 - Allows insulin to work more effectively

Incretins
- Hormones that ↑ insulin secretion
- **GIP** (glucose-dependent insulinotropic peptide)
 - Produced by K cells of small intestine
 - Secreted after meals
 - Stimulates insulin release (similar to GIP)
 - Also blunts glucagon release, slows gastric emptying
 - Oral glucose metabolized faster than IV glucose

Amylin Analogs
Pramlintide
- **GIV with meals**
- Always given with insulin (type 1 or type 2)
- **Hypoglycemia** may result → need to ↓ insulin dose
- Can also cause nausea

Glucosidase Inhibitors
Acarbose, Miglitol, Voglibose
- Taken orally before meals
- **Less spike in glucose after meals**
- Lowers mean glucose level → lowers A1c
- Less insulin used (“insulin sparing”)
- Main side effect: GI upset
 - Flatulence
 - Diarrhea

Incretins
- Hormones that ↑ insulin secretion
- **GIP** (glucose-dependent insulinotropic peptide)
 - Produced by K cells of small intestine
 - Secreted after meals
 - Stimulates insulin release (similar to GIP)
 - Also blunts glucagon release, slows gastric emptying
 - Oral glucose metabolized faster than IV glucose
Diabetes Therapy
Helpful Tips
- Renal failure: Avoid metformin (lactic acidosis)
- Advanced heart failure
- Avoid TZDs (fluid retention)
- Avoid metformin (lactic acidosis)
- Insulin generally safe with any comorbidity

SGLT2 Inhibitors
Canagliflozin, Dapagliflozin
- Oral drugs taken once daily
- Lead to mild weight loss
- May improve outcomes in heart failure
- Adverse effects
 - Vulvovaginal candidiasis
 - UTIs
 - Not recommended with advanced renal disease

Proximal Tubule
SGLT2
- Expressed in proximal tubule
- Reabsorbs ~90% percent filtered glucose
- Inhibition → loss of glucose in urine
- Lowers glucose levels
- Also causes mild osmotic diuresis

SGLT2 Inhibitors
Canagliflozin, Dapagliflozin
- SGLT2
- Expressed in proximal tubule
- Reabsorbs ~90% percent filtered glucose
- Inhibition → loss of glucose in urine
- Lowers glucose levels
- Also causes mild osmotic diuresis

Diabetes Therapy
Helpful Tips
- Renal failure: Avoid metformin (lactic acidosis)
- Advanced heart failure
- Avoid TZDs (fluid retention)
- Avoid metformin (lactic acidosis)
- Insulin generally safe with any comorbidity
Reproductive Hormones

Sex Hormone Binding Globulins
- Glycoproteins
- Produced by the liver
- Binds androgens more than estrogens

Reproductive Hormones
- Estrogens and androgens
- Development and function of sex organs
- Secondary sexual characteristics (puberty)

Estrogens
- Potency: Estradiol > Estrone > Estriol

Androgens
- Potency: DHT > Testosterone > others

Reproductive Hormones
- Steroid hormones (from cholesterol)
- Poorly soluble in plasma
- Carried by sex hormone binding globulins (SHBGs)
 - Smaller amount by albumin
 - Cross lipid bilayer of cells
 - Bind to intracellular receptors

SHBG
- Sex Hormone Binding Globulins
- Glycoproteins
- Produced by the liver
- Binds androgens more than estrogens

A > E
GNRH
Gonadotropin-releasing hormone
• Peptide produced by hypothalamus
• Released in pulses ("pulsatile")
• Frequency and amplitude of pulses varies
• Changes effect release of LH/FSH from pituitary

Puberty
• FSH and LH are low before puberty
• Rise at puberty in boys and girls

Cirrhosis
• ↑ estrogen effects
 • Gynecomastia
 • Spider nevi
 • Palmar erythema
 • Testicular atrophy
 • Impotence
• Altered metabolism/excretion → ↑ estrogen
• ↑ SHBG → ↑ estrogen effects
• Clinical features of Testosterone/Luteinizing

Reproductive Hormones
• Hypothalamus: GnRH
• Pituitary:
 • Follicle stimulating hormone
 • Luteinizing Hormone
• Testes/Ovaries
 • Androgens/Estrogens

Estrogen Amplification
• Free hormones → clinical effects
• ↑ SHBG → ↓ free androgens and estrogens
 • More effect on androgens
 • ↑ ratio estrogens to androgens
 • "Amplification" of estrogen effects

SHBG
Sex Hormone Binding Globulins

<table>
<thead>
<tr>
<th>Causes</th>
<th>↑ Estrogens</th>
<th>↑ Androgens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormones</td>
<td>Hypothyroidism</td>
<td>Nephrotic Syndrome</td>
</tr>
<tr>
<td>Clinical Effects</td>
<td>Gynecomastia (men)</td>
<td>Hirsuitism (women)</td>
</tr>
</tbody>
</table>

SHBG
Sex Hormone Binding Globulins

Low SHBG
Bound
Free
Bound
Free

High SHBG

Gynecomastia
Spider nevi
Palmar erythema
Testicular atrophy
Impotence
Kallmann Syndrome

- Absence of GnRH secretion from hypothalamus
- Impaired migration of GnRH neurons from origin in olfactory bulb to hypothalamus
- Almost always occurs in males (5:1 ratio)
- Key features: hypogonadism and anosmia
- Low GnRH/FSH/LH/Testosterone
- Delayed puberty
- Small testes

Leuprolide

Uses
- Continuous
 - Suppression of LH/FSH release
 - Endometriosis
 - Uterine fibroids (leiomyomata)
 - Prostate cancer
 - Precocious puberty

- Pulsatile (rarely done)
 - Stimulation of LH/FSH release
 - Administered by infusion pump
 - Dose varies about every 90 minutes
 - Used to create LH surge for ovulation (infertility)

Leuprolide

- Initial binding can stimulate LH/FSH release
- Chronic treatment → ↓ LH/FSH
- Down-regulation of GnRH receptor
- Pituitary desensitization
- Suppresses ovarian follicular growth and ovulation
- Low levels of estradiol and progesterone
- Similar to menopause

Leuprolide

- GnRH agonists
 - Derived from GnRH
 - D-amino acid substitution for native L-amino acid
 - Resistant to degradation
 - ↑ half-life → occupies receptors for prolonged period of time

GNRH

Gonadotropin-releasing hormone
- Gq protein system with IP3 second messenger
 - PIP2 = Phosphatidylinositol bisphosphate
 - IP3 = Inositol trisphosphate
 - DAG = Diacylglycerol

GnRH

- Gonadotropin-releasing hormone
- Gq protein system with IP3 second messenger
 - PIP2 = Phosphatidylinositol bisphosphate
 - IP3 = Inositol trisphosphate
 - DAG = Diacylglycerol

Eak435s /Wikipedia
Pituitary Hormones
• All have a cAMP second messenger system
 • α-subunit
 • β-subunit

Pituitary Reproductive Hormones
• LH, FSH
• Proteins
• LH, FSH, TSH and HCG are "heterodimers"
 • Dimer = two molecules; hetero = different
 • Two chains: α and β
 • Same α, different β
Male Reproductive Hormones

Testosterone also converted to estradiol
- Occurs in adipose tissue and Leydig cells
- Enzyme: Aromatase
- Some testosterone effects mediated by estradiol

Finasteride
- 5-α reductase inhibited by finasteride
- Used for treatment of prostatic hyperplasia
- Also used to treat hair loss in men

Dihydrotestosterone (DHT)
- Testosterone converted to DHT in peripheral tissues
- Enzymes: 5-α reductase
- Many testosterone effects mediated by DHT
- DHT: ↑ potency
 - Binds androgen receptor > testosterone
 - More stable

Estradiol
- Testosterone also converted to estradiol
- Occurs in adipose tissue and Leydig cells
- Enzyme: Aromatase
- Some testosterone effects mediated by estradiol
Testosterone Effects

Males

1. Development of testes requires Y chromosome
2. SRY gene produces testis determining factor
3. All males (XY) born with testes
4. "Chromosomal sex" determined by XX/XY
5. Internal/external genitalia requires hormones

Fetus

- Derived from mesonephric ducts
- Seminal vesicles, epididymis, vas deferens
- Requires testosterone
- External genitalia
 - Derived from urogenital sinus
 - Penis, scrotum (also prostate, bladder)
 - Requires DHT

Testosterone Effects

Males

- Different effects on different growth stages
 - Fetus
 - Puberty
 - Adult

Testosterone Effects

Fetus

- Internal genitalia
 - Derived from mesonephric ducts
 - Seminal vesicles, epididymis, vas deferens
 - Requires testosterone

5-α Reductase Deficiency

- Autosomal recessive disorder of sexual development
- 46,XY male able to make testosterone, not DHT

Testosterone Effects

Fetus

- Development of testes requires Y chromosome
- SRY gene produces testis determining factor
- All males (XY) born with testes
- "Chromosomal sex" determined by XX/XY
- Internal/external genitalia requires hormones

Testosterone Effects

Males

- Different effects on different growth stages
 - Fetus
 - Puberty
 - Adult

Testosterone Effects

Fetus

- Development of testes requires Y chromosome
- SRY gene produces testis determining factor
- All males (XY) born with testes
- "Chromosomal sex" determined by XX/XY
- Internal/external genitalia requires hormones

Testosterone Effects

Males

- Different effects on different growth stages
 - Fetus
 - Puberty
 - Adult

Testosterone Effects

Fetus

- Development of testes requires Y chromosome
- SRY gene produces testis determining factor
- All males (XY) born with testes
- "Chromosomal sex" determined by XX/XY
- Internal/external genitalia requires hormones

Testosterone Effects

Males

- Different effects on different growth stages
 - Fetus
 - Puberty
 - Adult
Testosterone Effects

Puberty
- Enlargement of the scrotum, and testes
- Increased penile size
- Enlargement of seminal vesicles/prostate
- Growth of pubic hair
- Hair on face/underarms
- Deepening of voice

Acne
- Associated with increased sebum
- Secretion of sebaceous glands
- Androgen receptors on sebaceous glands
- Acne common in puberty
- Also common in other forms androgen excess
 - Polycystic ovarian syndrome
 - Congenital adrenal hyperplasia

5-α Reductase Deficiency

- Normal internal genitalia
 - Normal epididymis, vas deferens, seminal vesicles
 - Empty into a blind-ending vagina
- External genitalia predominately female
 - Absent external male genitalia
 - Range of female genitilia seen +/- hypospadias
 - Sometimes diagnosed at birth due to ambiguous genitalia

5-α Reductase Deficiency

- Typical case
 - Male with ambiguous genitalia
 - Female child with masculinization at puberty
 - Blind vagina
 - Absence of uterus
 - Bilateral undescended testes
 - Normal testosterone levels

Testosterone Effects

Puberty
- Growth spurt (*via estrogens*)
 - Increased linear growth
 - Closure of epiphysial plates

Testosterone Effects

Adults
- Prostate growth
 - Finasteride \rightarrow Decrease DHT \rightarrow Treatment of BPH
- Testosterone therapy \rightarrow BPH
- May effect lipids
 - Exogenous testosterone \rightarrow Decrease HDL/Increase LDL
 - Male pattern balding
Spironolactone

- Potassium sparing diuretic
- Blocks effects of aldosterone
- Used in hypertension, heart failure
- Key side effect: **gynecomastia** (~10%)
 - Blocks androgen receptor
 - ↓ androgen production from androstenedione
- Result:
 - ↑ estrogen effects
 - ↓ androgen effects

Testosterone Therapy

- Used in male hypogonadism
- Results in:
 - Increased muscle mass
 - Increased bone density
- Potential adverse effects
 - ↑ hematocrit
 - Acne
 - Balding
 - Worsening BPH

Male Hypogonadism

- Many congenital and acquired causes
- May occur with **aging**
 - ↓ serum testosterone
 - ↑ sex hormone-binding globulin (SHBG)
 - ↓ serum free testosterone
- May be associated with:
 - ↓ sexual function
 - ↓ bone mass
 - Anemia
- Limited data on hormone replacement for decreased testosterone due to aging

Anabolic Steroids

- **High dosages** of androgens used by body builders
 - Exogenous testosterone
 - Androgen precursors
- All lead to ↑ testosterone effects → ↑ muscle mass
- Adverse effects
 - ↑ HDL/↑ LDL
 - Erythrocytosis
 - Small testes (suppression of FSH/LH)
 - Anospermia
 - Gynecomastia

Spermatogenesis

- Suppressed by exogenous testosterone
 - Testosterone suppresses LH secretion
 - ↓ testosterone from Leydig cells
 - Exogenous hormone weak activity in testes
 - ↓ spermatogenesis

Androgenic Alopecia

- Most common type of hair loss in men
- Anterior scalp, mid scalp, temporal scalp, and vertex
- Caused by **androgens**
 - Occurs after puberty
 - Will not occur with androgen deficiency
- **DHT** is key androgen
 - Responds to finasteride treatment

Male Hypogonadism

- Many congenital and acquired causes
- May occur with **aging**
 - ↓ serum testosterone
 - ↑ sex hormone-binding globulin (SHBG)
 - ↓ serum free testosterone
- May be associated with:
 - ↓ sexual function
 - ↓ bone mass
 - Anemia
- Limited data on hormone replacement for decreased testosterone due to aging

Testosterone Therapy

- Used in male hypogonadism
- Results in:
 - Increased muscle mass
 - Increased bone density
- Potential adverse effects
 - ↑ hematocrit
 - Acne
 - Balding
 - Worsening BPH

Anabolic Steroids

- **High dosages** of androgens used by body builders
 - Exogenous testosterone
 - Androgen precursors
- All lead to ↑ testosterone effects → ↑ muscle mass
- Adverse effects
 - ↑ HDL/↑ LDL
 - Erythrocytosis
 - Small testes (suppression of FSH/LH)
 - Anospermia
 - Gynecomastia

Spermatogenesis

- Suppressed by exogenous testosterone
 - Testosterone suppresses LH secretion
 - ↓ testosterone from Leydig cells
 - Exogenous hormone weak activity in testes
 - ↓ spermatogenesis

Androgenic Alopecia

- Most common type of hair loss in men
- Anterior scalp, mid scalp, temporal scalp, and vertex
- Caused by **androgens**
 - Occurs after puberty
 - Will not occur with androgen deficiency
- **DHT** is key androgen
 - Responds to finasteride treatment

Male Hypogonadism

- Many congenital and acquired causes
- May occur with **aging**
 - ↓ serum testosterone
 - ↑ sex hormone-binding globulin (SHBG)
 - ↓ serum free testosterone
- May be associated with:
 - ↓ sexual function
 - ↓ bone mass
 - Anemia
- Limited data on hormone replacement for decreased testosterone due to aging
Sertoli Cells

- Secrete inhibin B: Inhibits FSH
- Form blood-testis barrier
- Tight junctions between adjacent Sertoli cells
- Isolates sperm
- Protection from autoimmune attack
- Stimulated by FSH
- Supported by Leydig cell testosterone (paracrine)
- Need FSH and LH for normal spermatogenesis

Spironolactone

- Acne, hirsutism, alopecia in women
- Blunts testosterone effects
- Enhances estrogen effects
- Amenorrhea
- Stimulates progesterone receptors
- Eplerenone
- Alternative to spironolactone
- Does not cause gynecomastia
- Can be used in heart failure

Spironolactone

- Acne, hirsutism, alopecia in women
- Blunts testosterone effects
- Enhances estrogen effects
- Amenorrhea
- Stimulates progesterone receptors

Eplerenone

- Alternative to spironolactone
- Does not cause gynecomastia
- Can be used in heart failure

Spironolactone

- Acne, hirsutism, alopecia in women
- Blunts testosterone effects
- Enhances estrogen effects
- Amenorrhea
- Stimulates progesterone receptors

Eplerenone

- Alternative to spironolactone
- Does not cause gynecomastia
- Can be used in heart failure

Spironolactone

- Acne, hirsutism, alopecia in women
- Blunts testosterone effects
- Enhances estrogen effects
- Amenorrhea
- Stimulates progesterone receptors

Eplerenone

- Alternative to spironolactone
- Does not cause gynecomastia
- Can be used in heart failure

Spironolactone

- Acne, hirsutism, alopecia in women
- Blunts testosterone effects
- Enhances estrogen effects
- Amenorrhea
- Stimulates progesterone receptors

Eplerenone

- Alternative to spironolactone
- Does not cause gynecomastia
- Can be used in heart failure
Disorders of Sex Development

Ambiguous Genitalia
- 46, XX
- 46, XY
- Mullerian Structures
 - YES
 - Often CAH
- CAH
 - Lack of androgens
 - CAIS
 - ↓ DHT

Abnormal Puberty
- 46, XX
- 46, XY
- Mullerian Structures
 - YES
 - CAH
 - CAIS

Complete Androgen Insensitivity Syndrome (CAIS)
- Mutation of androgen receptor in males (XY)
- No ovaries; testes form in utero (SRY gene)
- No cellular response to androgens
- No internal or external male genital development
- Sertoli cells (testes) present → MIH

Male Development
- Y Chromosome → testes → Sertoli cells
- Mesonephric (Wolffian) ducts: male structures
- Sertoli cells: secrete androgen-binding protein (ABP)
- Raises/maintains local testosterone levels
- Intra-testicular testosterone concentration 100x peripheral
- Produce anti-mullerian hormone
- Results in degeneration of mullerian ducts

Anti-mullerian Hormone
- In utero (XX or XY): Two systems
 - Indifferent gonad (can develop into ovaries or testes)
 - Paramesonephric (Mullerian) duct: female structure
 - Mesonephric (Wolffian) duct: male structures
- Y chromosome → testes → Sertoli cells
- Secretion of anti-mullerian hormone
- Mullerian inhibitory hormone/substance
- Degeneration of mullerian system
- Leaves gonad and mesonephric ducts

CAIS
- Complete Androgen Insensitivity Syndrome
 - At puberty:
 - Breasts develop (testosterone → estrogen)
 - No armpit/pubic hair (depends on androgens)
 - Amenorrhea (no uterus)
 - Abdominal testes

Sertoli Cells
- Secrete androgen-binding protein (ABP)
- Raises/maintains local testosterone levels
- Intra-testicular testosterone concentration 100x peripheral
- Produce anti-mullerian hormone
- Results in degeneration of mullerian ducts

Disorders of Sex Development
- Ambiguous Genitalia
- Abnormal Puberty
Varicocele
• Dilatation of pampiniform plexus of spermatic veins

Bilateral Undescended Testes
• Phenotypical male with bilateral non-palpable testes
• Dangerous cause: congenital adrenal hyperplasia
 • Female (XX) exposed to increased androgens
 • Ambiguous genitalia may appear male with absent testes
 • Risk of shock from low cortisol
 • Key tests: ACTH, Cortisol
• Testes may be absent
 • Agenesis or atrophy (intrauterine vascular compromise)
 • Serum testing often done
 • Absent testes: ↑LH/FSH, absence of MIH

Cryptorchidism
• “Hidden testes”
• Usually due to undescended testes
 • Abdominal
 • Inguinal canal
• Can be unilateral/bilateral

Cryptorchidism Complications
• Low sperm counts
 • ↑ temperature effects on Sertoli cells
 • Low inhibin levels
 • ↑ risk of germ cell tumors
 • Inguinal hernias
 • Testicular torsion
 • Testicle rotates → twists spermatic cord
 • Compression of veins → ↓ blood flow
 • Hemorrhagic infarction

Cryptorchidism Treatment
• Testes may descend on their own
 • Usually occurs by 6 months of age
• Orchiopexy
 • Surgical placement of the testis in scrotum
 • Sperm counts usually become normal
 • Done after 6 months of age

Temperature Effects
• Spermatogenesis requires ↓ temperature
• Sertoli cells sensitive to temperature
 • ↓ spermatogenesis with higher temperature
 • ↓ inhibin production with higher temperature (FSH)
• Leydig cells less sensitive
 • Testosterone production usually maintained higher temps

Bilateral Undescended Testes

Varicocele
• Dilatation of pampiniform plexus of spermatic veins

Cryptorchidism

Cryptorchidism Complications

Cryptorchidism Treatment
Varicocele

- Caused by obstruction to outflow of venous blood
- More common on **left**
 - Left spermatic vein → left renal (long course)
 - Compressed between aorta and superior mesenteric artery
 - "Nutcracker effect"
 - Right vein drains directly to IVC
- Associated with renal cell carcinoma
 - Invades renal vein

Varicocele

- Scrotal pain and swelling
 - "Bag of worms"
- More swelling with:
 - Valsalva
 - Standing
- Diagnosed by **ultrasound**
- Can cause infertility
 - ↑ temperature
 - Poor blood flow

Varicocele

Treatment

- Surgery (varicocelectomy)
 - Isolate dilated/abnormal veins
 - Redirect blood flow to normal veins
- Embolization
 - Interventional radiology procedure
 - Catheter inserted into dilated/abnormal veins
 - Coil or sclerosants used to clot off veins

Varicocele

- Caused by obstruction to outflow of venous blood
- More common on **left**
 - Left spermatic vein → left renal (long course)
 - Compressed between aorta and superior mesenteric artery
 - "Nutcracker effect"
 - Right vein drains directly to IVC
- Associated with renal cell carcinoma
 - Invades renal vein
Female Reproductive Hormones

Estrogens
- Potency: Estradiol > Estrone > Estriol
 - Estradiol (17β-estradiol)
 - Estrone
 - Estriol

Hormone Synthesis
- **Theca cells**
 - Convert cholesterol into androstenedione
 - Stimulated by LH (via cAMP 2nd messenger)
- **Granulosa cells**
 - Convert androstenedione into estradiol
 - Stimulated by FSH (via cAMP 2nd messenger)
 - Also produce inhibin → suppresses FSH

Ovarian Follicle
- Egg surrounded by cells
- Two key cell types: theca and granulosa cells
 - Antrum (fluid)
 - Granulosa Cells
 - Oocyte
 - Theca Cells

Female Reproductive System
Progesterone Effects

- Many effects oppose estrogen
 - Decreases expression estrogen receptors
 - Many effects favorable to pregnancy

Progesterone

- Synthesized by corpus luteum
 - Also placenta, adrenal glands, testes
 - Most bound to albumin
 - Short half life → metabolized by liver
 - Main target is uterus, cervix, vagina
Hormonal Changes

- Estrogen levels high during reproductive years
- Higher in obese women
 - Androgens → estrone in adipose tissue
- High estrogens levels may lead to pathology:
 - Endometriosis
 - Uterine fibroids

Hormonal Changes

- Estrogen levels fall at menopause
 - Ovarian estrogen production stops
 - Continued lower-level estrogen from adipose tissue
 - Endometriosis and fibroids improve
- Unopposed estrogen levels higher after menopause
 - Continued estrogen from adipose tissue
 - No progesterone to oppose estrogen effects
 - Endometrial exposure to unopposed estrogen
 - Especially in obese women
 - Increased risk of endometrial carcinoma

Oral Contraceptives

- Analogs of estrogens and progesterone
 - "Estrogens and progestins"
- Progestin only
 - Oral "mini pill"
 - Medroxyprogesterone injection (Depo-Provera)
- Combination pills
 - Contain estrogen and progesterone

Oral Contraceptives

- Estrogen levels high during reproductive years
- Higher in obese women
- Androgens → estrone in adipose tissue
- High estrogens levels may lead to pathology:
 - Endometriosis
 - Uterine fibroids

Progestin Only

- Suppress ovulation via negative feedback on FSH/LH
- Thickens cervical mucus
- Obstructs sperm
- May protect against PID
- Thins endometrium
- Prevents implantation

Progestin Only

- Disadvantages
 - Same time every day (+/- 3 hours)
 - Irregular bleeding, spotting
- Advantages
 - No estrogen risks/side effects
Combination OCPs

Contraindications

- Smokers >35 years of age
- Risk of CV events
- History of DVT/PE

Combination OCP Risks

- Thrombosis
- Estrogen increases clotting factors
- Usually venous thrombosis: DVT/PE
- Rarely arterial thrombosis: stroke/MI
- Cancer
- Conflicting data
- May ↓ risk of endometrial and ovarian cancer
- May ↑ risk breast, cervical, liver cancer

Combination OCPs

- Combination of progestin and estrogen
- Estrogen stabilizes endometrium
- Less breakthrough bleeding
- Better suppression of follicular growth
- Progesterone suppresses LH
- Estrogen suppresses FSH
- Estrogen increases effect of progesterone
- More progesterone receptors

Medroxyprogesterone
Depo-Provera

- Injectable, progestin-only contraceptive
- Intramuscular or subcutaneous
- Once every 3 months

Combination OCP Risks

- Breakthrough bleeding
- Most common side effect
- More frequent if low estrogen component
- Hypertension (usually mild)

Combination OCPs

Contraindications

- Smokers >35 years of age
- Risk of CV events
- History of DVT/PE
Menstrual Cycle

Ovaries
Basic Principles
- Contain follicles
- Spherical collection of cells
- Contains a single oocyte
- Each menstrual cycle one egg matures/releases

Ovarian Follicle
- Egg surrounded by cells
- Two key cell types: theca and granulosa cells
- Antrum (fluid)
- Granulosa Cells
- Oocyte
- Theca Cells

Menstrual Cycle
Basic Principles
- Phases
 - Follicular (growth of follicles)
 - Ovulation
 - Luteal (preparation for pregnancy)
Menstrual Cycle

Follicular phase
- ↑ GnRH pulse frequency
- ↑ FSH → ↑ estradiol production from ovaries
- Recruitment of follicles
- ↑ estradiol → ↓ FSH/LH (negative feedback)
- Selection of one dominant/ovulatory follicle
- 10-14 days (varies in length)

Luteal phase
- Eventually corpus luteum degrades
- ↓ progesterone → menstruation
- Occurs 14 days after ovulation
- If fertilization occurs:
 - Embryo makes human chorionic gonadotropin (hCG)
 - Maintains the corpus luteum and progesterone production
 - Progesterone maintains suppression of LH/FSH

Corpus luteum
- Temporary endocrine gland formed from follicle
- Produces large amounts of progesterone
- Also some estradiol
- Progesterone/estradiol → LH/FSH
- Negative feedback

Mittelschmerz
- Mid-cycle pain
- Due to:
 - Enlargement of follicle or follicular rupture with bleeding
 - Usually mild, unilateral pain
 - Usually resolves in hours to days
 - Can mimic other disorders (appendicitis)

Mid-cycle surge
- Switch from negative feedback to positive feedback
- Estradiol triggers ↑ frequency GnRH pulses → LH surge
- Oocyte released from follicle ~36 hours after LH surge
- Basis for ovulation testing
 - Urine detection of LH

Ovulation
- Basis for ovulation testing
 - Urine detection of LH
Amenorrhea
• Primary amenorrhea
• Failure of menses at puberty
• Usually anatomic or genetic abnormality
• Secondary amenorrhea
• Cessation of normal menses after prior normal periods

Menstruation
• Progesterone levels fall
• Vasoconstriction of spiral arteries
• Apoptosis of endometrial cells occurs
• Collapse and desquamation of endometrium

Uterine Cycle
• Changes in endometrium
• Driven by estrogens and progesterone
• Parallels ovarian cycle
• Two phases:
 • Proliferative phase = follicular phase of ovary
 • Secretory phase = luteal phase of ovary

Menstrual and Uterine Cycles

Uterine Cycle
Secretory Phase
• Occurs after ovulation
• Progesterone inhibits proliferation of endometrium
• Numerous secretions released to prepare for embryo
• Changes in blood vessels
 • Vessels grow and coil
 • Form "spiral arteries" about 9th postovulatory day
 • Critical for implantation, support of fertilized egg

Uterine Cycle
Proliferative Phase
• Menstruation followed by endometrial proliferation
• Stimulated by estrogen
• Endometrial thickness increases (>10x)
• Growth of glands, stroma, blood vessels

Uterine Cycle
• Changes in endometrium
• Driven by estrogens and progesterone
• Parallels ovarian cycle
• Two phases:
 • Proliferative phase = follicular phase of ovary
 • Secretory phase = luteal phase of ovary

Menstruation
• Progesterone levels fall
• Vasoconstriction of spiral arteries
• Apoptosis of endometrial cells occurs
• Collapse and desquamation of endometrium

Uterine Cycle
Proliferative Phase
• Menstruation followed by endometrial proliferation
• Stimulated by estrogen
• Endometrial thickness increases (>10x)
• Growth of glands, stroma, blood vessels
Secondary Amenorrhea

- Low body weight
- "Functional hypothalamic amenorrhea"
- Stress plus low caloric intake → ↓ GnRH/LH/FSH
- Patients respond to pulsatile GnRH
- Can occur in anorexia

Secondary Amenorrhea

- Most common cause: pregnancy
- Screen with HCG measurement
- Thyroid disease (hypo/hyper)
- Prolactinoma
 - Inhibition of GnRH release → ↓ LH/FSH
- Cushing syndrome

Progestin Challenge

- Older test for causes of amenorrhea
- Many false positives
- Administration of progestin (oral or IM)
- Observation of menstrual bleeding within 7 days

Progestin Challenge

- Bleeding
 - Indicates estrogen is present
 - Suggests anovulation
 - Corpus luteum not forming (inadequate progesterone)
 - Classic cause: PCOS
- No bleeding
 - Suggests estrogen not present (ovarian dysfunction)
 - Or menstrual outflow problem
 - Can follow-up with estrogen-progestin challenge
 - Common cause: Menopause

Mullerian Dysgenesis

- Cause of primary amenorrhea
- Failure of Mullerian duct development
- Absent upper vagina and/or uterus
- Ovaries normal
- Estrogen/progesterone levels normal
- Normal LH/FSH levels

Mullerian Dysgenesis

- Old test for causes of amenorrhea
- Many false positives
- Administration of progestin (oral or IM)
- Observation of menstrual bleeding within 7 days

Secondary Amenorrhea

- Low body weight
 - "Functional hypothalamic amenorrhea"
 - Stress plus low caloric intake → ↓ GnRH/LH/FSH
 - Patients respond to pulsatile GnRH
 - Can occur in anorexia
Menopause

- Permanent cessation of menstrual periods
- Cause by depletion of ovarian follicles
- Median age = 51 years
- Usually preceded by abnormal periods
- Loss of estrogens and progesterone from ovaries

Menopause

- Loss of estrogen production from ovaries
 - Source of estrogen becomes adipose tissue
 - Aromatase converts androstenedione to estrone
 - Also loss of inhibin production from follicles
 - Inhibin normally suppresses FSH release
 - ↑ FSH is an early finding approaching menopause
 - Eventually FSH and LH levels both elevated

Menopause

- Permanent cessation of menstrual periods
- Cause by depletion of ovarian follicles
- Median age = 51 years
- Usually preceded by abnormal periods
- Loss of estrogens and progesterone from ovaries

Menopause

- Osteoporosis
 - Bone loss from lack of estrogen
- Cardiovascular disease
 - Risk increases after menopause
 - May be due in part due to estrogen deficiency

Menopause

- Hot flashes
 - Subjective sensation of warmth
 - Usually lasts a few minutes and passes
 - Associated with drop in estrogen levels
 - Can be treated with hormone replacement
- Vaginal atrophy
 - Thin, dry, friable
 - Loss of estrogen stimulation

Menopause

- Oral or transdermal estradiol
- Progestin added in women with intact uterus
 - Prevents endometrial hyperplasia

HRT

- Benefits:
 - Relieves hot flashes
 - Improves bone density
- Possible risks:
 - ↑ risk of DVT/Stroke/MI
 - ↑ risk of breast cancer
PCOS

Poly cystic Ovarian Syndrome

- Common cause secondary amenorrhea
- Genetics plus diet/obesity → ↑ LH:FSH ratio
- LH drives androstenedione from theca cells
- Some androgens → estrone in adipose tissue
- Estrone → ↓ FSH → anovulation

Hyperinsulinemia

- PCOS associated with insulin resistance
- More than expected for degree of obesity
- Can lead to diabetes

PCOS

Diagnosis

- Usually diagnosed clinically
- Can measure total testosterone
- LH and FSH may be within normal range
 - But LH/FSH ratio usually > 2:1 or 3:1

PCOS

Treatment

- Weight loss
- Oral contraceptives
 - Suppress LH
 - Estrogen → ↑ SHBG → ↓ androgens
- Spironolactone
 - Blocks androgens
- Metformin/TZDs
 - Diabetes drugs that improves insulin resistance
 - Not routinely used unless patient develops diabetes

PCOS

Clinical features

- Occurs in obese females
- Hirsutism (facial hair)
- Acne
- Amenorrhea
- Infertility
- Ultrasound: multiple follicular cysts

Hypercetinsulinemia

- PCOS associated with insulin resistance
- More than expected for degree of obesity
- Can lead to diabetes

PCOS

Genetics

- Anovulation
- Follicular Cysts
- ↑ Androstenedione (Theca cells)
- Hirsutism/Acne
- ↑ Estrone (Adipose)
- ↓ FSH
- ↓ Progesterone
- ▼ Testosterone
- Estradiol (Granulosa cells)
- ↑ LH/↓ FSH

PCOS

Growth

- Genes
- Diet/Obesity
- Hyperinsulinemia

PCOS

Polycystic Ovarian Syndrome

- Common cause secondary amenorrhea
- Genetics plus diet/obesity → ↑ LH:FSH ratio
- LH drives androstenedione from theca cells
- Some androgens → estrone in adipose tissue
- Estrone → ↓ FSH → anovulation
PCOS

Other Features

- Risk of **diabetes**
 - ~10% of women with PCOS develop DM by 40 years old
- **Acanthosis Nigricans**
 - Plaques of darkened skin
 - Associated with insulin resistance
 - Common in diabetes, PCOS, also gastric cancer
- Endometrial cancer
 - Unopposed estrogen (lack of progesterone)
 - ↑ risk of endometrial hyperplasia and carcinoma

Amenorrhea Workup

- Rule out:
 - Pregnancy
 - Thyroid
 - Cushing
 - Prolactin
 - Anorexia

<table>
<thead>
<tr>
<th>↓ FSH</th>
<th>↑ FSH</th>
<th>Normal FSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCOS</td>
<td>↑LH:FSH</td>
<td>Menopause</td>
</tr>
<tr>
<td>Mulherian Dysgenesis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pituitary Gland

Jason Ryan, MD, MPH

Anterior Pituitary Gland

Adenohypophysis

- Derived from Rathke’s pouch
- Outgrowth of oral cavity
- Contains five cell types that make hormones

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Hormone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticotroph</td>
<td>Adrenocorticotropic hormone (ACTH)</td>
</tr>
<tr>
<td>Thyrotroph</td>
<td>Thyroid-stimulating hormone (TSH)</td>
</tr>
<tr>
<td>Gonadotroph</td>
<td>Luteinizing hormone (LH)</td>
</tr>
<tr>
<td>Follicle-stimulating hormone (FSH)</td>
<td></td>
</tr>
<tr>
<td>Somatotroph</td>
<td>Growth hormone (GH)</td>
</tr>
<tr>
<td>Lactotroph</td>
<td>Prolactin</td>
</tr>
</tbody>
</table>

Posterior Pituitary Gland

Neurohypophysis

- Secretes ADH (vasopressin) and oxytocin
- Derived from neural ectoderm in floor of forebrain
- Contains axons and nerve terminals
- Neurons originate in hypothalamus
- Paraventricular and supraoptic nuclei
 - Paraventricular: Oxytocin
 - Supraoptic: ADH

Pituitary Gland

- Connected to hypothalamus via pituitary stalk
- Connects to median eminence of hypothalamus
 - One of the circumventricular organs (CVOs)
 - Does not contain blood brain barrier

Pituitary Gland

- "Master gland"
- Endocrine gland at base of brain
- Sits in small cavity of sphenoid bone: sella turcica

Hypothalamic Portal System

- Main blood supply to anterior pituitary gland
- Delivers releasing/inhibiting hormones

<table>
<thead>
<tr>
<th>Hypothalamus</th>
<th>Pituitary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticotropin-releasing hormone (CRH)</td>
<td>ACTH</td>
</tr>
<tr>
<td>Thyrotropin-releasing hormone (TRH)</td>
<td>TSH</td>
</tr>
<tr>
<td>Gonadotropin-releasing hormone (GnRH)</td>
<td>LH/TSH</td>
</tr>
<tr>
<td>Growth hormone-releasing hormone (GRH)</td>
<td>GH/Somatostatin</td>
</tr>
<tr>
<td>Dopamine</td>
<td>Prolactin</td>
</tr>
<tr>
<td>Somatostatin</td>
<td>GHR/TSH</td>
</tr>
</tbody>
</table>
Prolactin

- Protein hormone
- Regulates milk production in mothers

Prolactin in Pregnancy

- **Prolactin**
 - Stimulates growth of mammary glands
 - Milk production in pregnancy does not occur
 - Estradiol and progesterone block prolactin effect on milk
 - After childbirth →↓ estradiol and progesterone
 - Milk production occurs

Prolactin in Pregnancy

- **Prolactin inhibits GnRH release**
 - Results in cessation of ovulation/menstruation

Prolactin

- Under *inhibitory control* from hypothalamus
 - Hypothalamus releases dopamine
 - Inhibits lactotrophs via binding to D2 receptors
 - Destruction of hypothalamus: ↑ prolactin
 - Prolactin feedback on hypothalamus
 - Increases dopamine release →↓ prolactin

Prolactin in Pregnancy

- **Estrogen** stimulates prolactin release
 - Stimulates gene transcription
 - Stimulates release from lactotrophs
 - Marked increase in lactotrophs during pregnancy
 - Pituitary can grow in size

Prolactin

- Many other substances affect prolactin release
 - VIP, Oxytocin, TRH, others
 - TRH (thyrotropin-releasing hormone)
 - Elevated in hypothyroidism
 - Hypothyroidism predisposes to hyperprolactinemia
 - Hypothyroidism in differential for:
 - Pituitary enlargement
 - Hyperprolactinemia

Prolactin in Pregnancy

- **Prolactin**
 - Protein hormone
 - Regulates milk production in mothers

Prolactin in Pregnancy

- Prolactin stimulates growth of mammary glands
- Milk production in pregnancy does not occur
 - Estradiol and progesterone block prolactin effect on milk
 - After childbirth →↓ estradiol and progesterone
 - Milk production occurs

Prolactin in Pregnancy

- Prolactin
 - Under inhibitory control from hypothalamus
 - Hypothalamus releases dopamine
 - Inhibits lactotrophs via binding to D2 receptors
 - Destruction of hypothalamus: ↑ prolactin
 - Prolactin feedback on hypothalamus
 - Increases dopamine release →↓ prolactin

Prolactin

- Many other substances affect prolactin release
 - VIP, Oxytocin, TRH, others
 - TRH (thyrotropin-releasing hormone)
 - Elevated in hypothyroidism
 - Hypothyroidism predisposes to hyperprolactinemia
 - Hypothyroidism in differential for:
 - Pituitary enlargement
 - Hyperprolactinemia

Prolactin in Pregnancy

- **Prolactin**
 - Protein hormone
 - Regulates milk production in mothers

Dopamine Agonists

- Can be used to treat Parkinson’s disease
- Also used to treat prolactinomas
- Will inhibit prolactin release (via D2 receptors)

Hyperprolactinemia

- Women
 - Amenorrhea (lack of GnRH/LH/FSH)
 - Galactorrhea (prolactin)
- Men
 - “hypogonadotropic hypogonadism”
 - Decreased libido
 - Impotence
 - Infertility
 - Gynecomastia
 - Usually no galactorrhea (not enough breast tissue)

Pituitary Adenomas

- Tumors of any cell type of anterior pituitary
- May result in increased secretion of hormones
- Most common secreting tumor: prolactinoma

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactotrophs</td>
<td>Hyperprolactinemia</td>
</tr>
<tr>
<td>Thyrotrophs</td>
<td>General hyperthyroidism</td>
</tr>
<tr>
<td>Corticotrophs</td>
<td>Cushing’s disease</td>
</tr>
<tr>
<td>Somatotrophs</td>
<td>Acromegaly/Gigantism</td>
</tr>
</tbody>
</table>

Dopamine Antagonists

- Antipsychotics: Haloperidol, Risperidone
- Antiemetics: Metoclopramide
- Blockade of D2: ↑ prolactin

- Side Effects:
 - Amenorrhea
 - Breast engorgement
 - Galactorrhea
 - Sexual dysfunction
- Can also cause Parkinsonian symptoms
Sheehan Syndrome
- Pituitary gland enlarged in pregnancy
- Vulnerable to infarction from hypovolemic shock
- Postpartum hemorrhage → hypopituitarism
- Can present as shock after delivery
- Also can see failure to lactate

Pituitary Apoplexy
- Sudden hemorrhage into the pituitary gland
- Often occurs into pre-existing adenoma
- Risk factors for bleeding may be present (warfarin)
- Sudden onset severe headache
- Diplopia (pressure on oculomotor nerves)
- Hypopituitarism (shock from loss of cortisol)

Empty Sella Syndrome
- Enlarged sella turcica partially filled with CSF
- Rarely can compress pituitary → hypopituitarism
- More common in women with obesity, hypertension

Craniopharyngioma
- Benign tumor
- Usually occurs in children 10-14 years old
- Symptoms from compression
 - Hypopituitarism
 - Headache, visual field defects
 - Behavioral change (frontal lobe dysfunction)
 - Derived from remnants of Rathke's pouch

Hypopituitarism
- Caused by damage to anterior pituitary
 - Mass: Nonfunctional adenoma, craniopharyngioma
 - Ischemia, brain injury, hemorrhage
 - ACTH deficiency
 - Low cortisol → shock
 - No loss of aldosterone → no salt wasting
 - Lack of hyperpigmentation (see in primary adrenal failure)
 - TSH deficiency → hypothyroidism
 - LH/FSH deficiency → hypogonadism

Radiation
- Some head and neck tumors treated with radiation
 - Brain tumors or nasopharyngeal carcinomas
 - Some pituitary adenomas treated with radiation
 - Can cause damage to hypothalamus or pituitary

Stevenfruitsmaak/Wikipedia

Redacted text
Growth Hormone

- **Somatotropin**
 - Many stimulants and suppressors
 - Pituitary release stimulated by:
 - GHRH
 - Exercise
 - Sleep (very high just after onset of sleep)
 - Released inhibited by:
 - Glucose
 - Somatostatin (released in response to IGF-1; GH)
 - IGF-1 (direct and indirect)

Growth Hormone Receptor

- Bind to a membrane-bound receptor
- Activates janus kinase 2 (JAK2) enzyme
- Cytoplasmic tyrosine kinase
- Phosphorylates tyrosine residues
- Within JAK2 itself and on GH receptor
- Forms binding sites for many signaling molecules
- Alters gene expression

Growth Hormone

- Liver contains many growth hormone receptors
- GH → Liver → IGF-1 secreted
- Insulin-like growth factor 1/Somatotropin
- Hormone that mediates many growth hormone effects
- Can be measured in serum as indicator of GH function
- IGF-1 also produced in peripheral tissues
- Paracrine effects on nearby sites

Growth Hormone

- Direct Effects
 - ↓ glucose uptake by cells
 - Anti-insulin
 - Will raise blood sugar (“Diabetogenic”)
 - Peripheral tissues become insulin resistant
 - Hyperinsulinemia

Hypopituitarism

- Treatment
 - Hormone therapy
 - Corticosteroids
 - Thyroid hormone
 - Growth hormone
 - Estrogen/testosterone

Hypopituitarism

- Somatotropin
 - Protein hormone
 - Important for linear (height) growth in childhood
 - Released in a pulsatile manner
 - Between pulses levels may become undetectable

Hypopituitarism

- Treatment
 - Hormone therapy
 - Corticosteroids
 - Thyroid hormone
 - Growth hormone
 - Estrogen/testosterone
Growth Hormone Excess
• Most common cause is somatotroph adenoma
• High GH and IGF-1
• Low GHRH from hypothalamus (negative feedback)
• High somatostatin (negative feedback)
• May present with headache, vision loss
• Rare cause: GHRH secreting tumors
• Hypothalamic tumors, carcinoid tumors, small-cell lung CA
• GHRH level will be high

Growth Hormone Deficiency
• Most commonly from pituitary tumor
• Mass effect
• Consequence of surgery/radiation
• Treatment: Synthetic growth hormone
• Monitoring: Serum IGF-1 level

Growth Hormone
Direct Effects
• Promotes lipolysis
 • Activates hormone sensitive lipase
 • Production of IGF-1 from liver

Growth Hormone Deficiency
• Children:
 • Failure to grow
• Adults
 • ↑ fat
 • ↓ lean body mass
 • Low energy

Growth Hormone
IGF-1 Effects
• Chondrocytes
 • Increased linear growth
• Muscle
 • Lean muscle mass
• Organs
 • Increased organ size

Growth Hormone
IGF-1 Effects
• Opposes Insulin
• Raises blood sugar

Growth Hormone
Bone/Muscle
Linear Growth
Lean muscle Mass

Growth Hormone Direct Effects
• Promotes lipolysis
• Activates hormone sensitive lipase
• Production of IGF-1 from liver

Growth Hormone Deficiency
• Children:
 • Failure to grow
• Adults
 • ↑ fat
 • ↓ lean body mass
 • Low energy

Growth Hormone Excess
• Most common cause is somatotroph adenoma
 • High GH and IGF-1
 • Low GHRH from hypothalamus (negative feedback)
 • High somatostatin (negative feedback)
 • May present with headache, vision loss
• Rare cause: GHRH secreting tumors
 • Hypothalamic tumors, carcinoid tumors, small-cell lung CA
 • GHRH level will be high
Growth Hormone Excess

- Children:
 - Excessive growth: Gigantism
 - Linear growth: Very tall child
- Adults: Acromegaly

Acromegaly

- Insidious onset
 - Average duration symptoms → diagnosis = 12 years
- Enlarged jaw
 - Coarse facial features
 - Enlargement of nose, frontal bones

Acromegaly

- Enlarged hands and feet
 - Classic sign: Increasing glove/shoe size
 - Rings that no longer fit

Acromegaly

- Insulin resistance → ↑ insulin → diabetes
 - Diabetes in 10-15% of patients
 - Abnormal glucose tolerance in 50% of patients

Acromegaly

- Visceral organs enlargement
 - Thyroid, heart, liver, lungs, kidneys, prostate
- Synovial tissue/cartilage enlargement
 - Joint pain in knees, ankles, hips, spine
 - Common presenting complaint is joint pain
- Cardiovascular disease
 - Hypertension, left ventricular hypertrophy, cardiomyopathy
 - Mortality increased in acromegaly due to CV disease

Growth Hormone Excess

Diagnosis

- Serum IGF-1 concentration
 - IGF-1 level is constant (contrast with GH)
- Oral glucose tolerance testing
 - Glucose should suppress growth hormone levels
 - Normal subjects: GH falls within two hours
 - Post glucose levels high
- CNS imaging (MRI)
Somatostatin

- **Inhibits** release of many hormones
- Released by D cells throughout GI tract
- Also found in **nerves** throughout entire body
- Originally discovered in hypothalamus
- Inhibits growth hormone release
- Used therapeutically (Octreotide):
 - Acromegaly
 - Carcinoid syndrome
 - Glucagonoma/insulinoma
 - Upper GI bleeding (↓ splanchnic blood flow)

Oxytocin

- Produced in **paraventricular nuclei** of hypothalamus
- Causes **milk release** in response to suckling
- Afferent fibers nipple → spinal cord
- Triggers release oxytocin from posterior pituitary
- Oxytocin triggers contraction of myoepithelial cells in breast

MSH (Melanocyte Stimulating Hormone)

- **Proopiomelanocortin**: Precursor of ACTH
- Also precursor of MSH (α/β/γ)
- MSH: Stimulates melanocytes to produce melanin
- Causes hyperpigmentation in **Cushing's disease**

Growth Hormone Excess

Treatment

- **Octreotide**
 - Analog of somatostatin
 - Suppresses release of growth hormone
 - Also surgery, radiation
 - Goal: **Lower IGF-1** to within reference range
 - Bony abnormalities do not regress
 - Joint symptoms often continue

Oxytocin

- Also causes **contraction of uterus**
 - Oxytocin receptors upregulate in uterus near term
 - Pitocin (synthetic oxytocin)
 - Induction of labor
 - Postpartum uterine bleeding
Parathyroid Hormone

- Protein hormone
- Binds to cell surface receptors in bone and kidney
- Synthesized by chief cells of parathyroid gland

Parathyroid Hormone Effects

- Net Effects:
 - ↑[Ca^{2+}] plasma
 - ↓[P04^{3-}] plasma
 - ↑[P04^{3-}] urine
- Some due to direct action PTH
- Some due to activation of vitamin D (indirect)

Parathyroid Glands

- Four endocrine glands
- Formed by 3rd/4th pharyngeal pouch
- Located behind thyroid
- Secrete parathyroid hormone (PTH)
- Important for calcium, phosphate homeostasis

Parathyroid Glands

Jason Ryan, MD, MPH

Parathyroid Glands

- Four endocrine glands
- Formed by 3rd/4th pharyngeal pouch
- Located behind thyroid
- Secrete parathyroid hormone (PTH)
- Important for calcium, phosphate homeostasis

Parathyroid Gland
Parathyroid Hormone Magnesium

- Very low Mg → inhibits PTH release
 - Some Mg required for normal CaSR function
 - Abnormal function → suppression of PTH release
 - Hypocalcemia often seen in severe hypomagnesemia

Qt Interval

Normal Qt

Prolonged Qt: ↓Mg, ↓Ca

Short Qt: ↑Ca

Parathyroid Hormone Effects

- Kidney:
 - ↑Ca\(^{2+}\) resorption (DCT)
 - ↓P04\(^{3-}\) resorption (PCT)
 - ↑1,25-(OH)\(^2\) vitamin D production
- GI:
 - ↑Ca\(^{2+}\) and P04\(^{3-}\) absorption (via vitamin D)
- Bone:
 - ↑Ca\(^{2+}\) and P04\(^{3-}\) resorption (direct and via vitamin D)

Parathyroid Hormone

Lumen (Urine)

Interstitium/Blood

PTH

10

Na

P04

Na

ATP

K

1TP04-excretion

Proximal Tubule

Vitamin D and the Kidney

- Proximal tubule converts vitamin D to active form
- Can occur independent of kidney in sarcoidosis
 - Leads to hypercalcemia

25-OH Vitamin D

P04

PTH

1\(\alpha\)-hydroxylase

1,25-OH\(^2\) Vitamin D
Parathyroid Hormone

- **Continuous administration of PTH**
 - Bone resorption → ↑ serum calcium
 - Important physiologically

- **Low dose once daily bolus administration**
 - Increased bone mass (bone formation)
 - **Teriparatide** used to treat osteoporosis

- **Multiple effects on bone**
 - Stimulates bone resorption and formation
 - Dominant effect varies with dosage/timing of administration of PTH to bone

Types of Bone

- **Cortical bone**
 - Hard, outer layer of bone
 - ↑ in response to continuous PTH

- **Trabecular bone**
 - Spongy, inner layer of bone
 - ↑ in response to intermittent, low dose PTH
Primary Hyperparathyroidism

- Inappropriate secretion of PTH
- Not due to low calcium
- Commonly caused by parathyroid adenoma

Hyperparathyroidism

- Primary (overactive glands)
- Secondary (hypocalcemia)
- Tertiary (seen in renal failure)

PTHrP

Parathyroid hormone-related protein

- Produced in many tissues
- Numerous normal effects
- Synthesized in large amounts by some tumors
 - Renal cell carcinoma
 - Squamous cell lung cancer
- Leads to hypercalcemia in malignancy

Primary Hyperparathyroidism

- Urinary calcium usually high or normal
- ↑ PTH → ↑ Ca urinary reabsorption → ↑ serum Ca
- ↑ serum Ca → ↑ urinary calcium

Primary Hyperparathyroidism

- Causes hypercalcemia
 - ↑ renal reabsorption of Ca
 - ↑ vitamin D activation
 - ↑ bone resorption (loss of cortical bone)
 - Phosphaturia

↑PTH ↑Ca

PTHrP

Parathyroid hormone-related protein

- Produced in many tissues
- Numerous normal effects
- Synthesized in large amounts by some tumors
- Renal cell carcinoma
- Squamous cell lung cancer
- Leads to hypercalcemia in malignancy

Hyperparathyroidism

- Primary (overactive glands)
- Secondary (hypocalcemia)
- Tertiary (seen in renal failure)
Primary Hyperparathyroidism

Treatment
• Parathyroidectomy
• Removal of gland with adenoma
• Pre-op nuclear imaging often done to identify location
• Risks of recurrent laryngeal nerve damage
 • May result in hoarseness
• Post-op hypocalcemia
 • Remaining parathyroid glands may be suppressed
 • Numbness or tingling in fingertips, toes, hands
 • If severe: twitching or cramping of muscles

Osteitis Fibrosa Cystica

• Classic bone disease of hyperparathyroidism
• Clinical features: Bone pain and fractures

Osteitis Fibrosa Cystica

• Subperiosteal bone resorption
 • Commonly seen in bones of fingers
 • Irregular or indented edges to bones
• Brown tumors (osteoclastoma)
 • Collections of giant osteoclasts in bone
 • Mixed with stromal cells and matrix proteins
 • Appear as black spaces in bone on x-ray

Primary Hyperparathyroidism

Symptoms
• Bones (bone pain)
 • Adverse effects on bones of long-standing high PTH
• Groans (abdominal pain)
 • Constipation, anorexia, nausea
 • Increased stomach acid production (unclear mechanism)
• Recurrent peptic ulcers
• Psychiatric overtones
 • Anxiety, altered mental status

Primary Hyperparathyroidism

Symptoms
• Stones (kidney)
 • High Ca in urine can cause stones
• Dehydration
 • Calcium blunts effects of ADH (nephrogenic DI)
 • Polyuria and polydipsia
 • Can lead to renal failure

Primary Hyperparathyroidism

Symptoms
• Groans (abdominal pain)
 • Constipation, anorexia, nausea
• Recurrent peptic ulcers

Primary Hyperparathyroidism

Symptoms
• Stones (kidney)
 • High Ca in urine can cause stones
• Dehydration
 • Calcium blunts effects of ADH (nephrogenic DI)
 • Polyuria and polydipsia
 • Can lead to renal failure
Hypoparathyroidism
• Inappropriately low PTH secretion
• Not due to hypercalcemia
• Causes hypocalcemia
↓PTH ↓Ca

FHH
Familial Hypocalciuric Hypercalcemia
• Findings:
 • Usually normal PTH
 • Mildly elevated serum calcium
 • Low urinary calcium (key finding!)
 • May looks like 1° hyperparathyroidism
 • Real world distinction from 1° disease difficult
 • Genetic testing available
 • Usually does not require treatment

Calcium-Phosphate in Renal Failure
Sick Kidneys
↓Phosphate
↓1,25-OH2 Vitamin D
↓Ca from gut
↓Ca from plasma
Hypocalcemia
↑PTH

FHH
Familial Hypocalciuric Hypercalcemia
• Rare, autosomal dominant disorder
• Abnormal calcium sensing
 • Abnormal calcium sensing receptors (CaSRs)
 • G-protein membrane receptors
 • Found in parathyroid and also kidneys
• Higher than normal set point for calcium
 • Normal PTH → ↑ calcium
 • More renal resorption of calcium
 • Low urinary calcium

2° Hyperparathyroidism
• Occurs in renal failure patients
• Chronically low serum calcium → ↑ PTH
• No symptoms of hypercalcemia
• Results in renal osteodystrophy
 • Bone pain (predominant symptom)
 • Fractures (weak bones 2° chronic high PTH levels)
 • If severe, untreated can lead to osteitis fibrosa cystica

3° Hyperparathyroidism
• Consequence of chronic renal failure
• Chronically low calcium → chronically ↑ PTH
• Parathyroid becomes autonomous
• VERY high PTH levels
• Calcium may become elevated
• Often requires parathyroidectomy

↑PTH ↓Ca

2° Hyperparathyroidism
• Occurs in renal failure patients
• Chronically low serum calcium → ↑ PTH
• No symptoms of hypercalcemia
• Results in renal osteodystrophy
 • Bone pain (predominant symptom)
 • Fractures (weak bones 2° chronic high PTH levels)
 • If severe, untreated can lead to osteitis fibrosa cystica

↑PTH ↓Ca

3° Hyperparathyroidism
• Consequence of chronic renal failure
• Chronically low calcium → chronically ↑ PTH
• Parathyroid becomes autonomous
• VERY high PTH levels
• Calcium may become elevated
• Often requires parathyroidectomy

↑PTH ↓Ca

Calcium-Phosphate in Renal Failure
Sick Kidneys
↓Phosphate
↓1,25-OH2 Vitamin D
↓Ca from gut
↓Ca from plasma
Hypocalcemia
↑PTH

FHH
Familial Hypocalciuric Hypercalcemia
• Rare, autosomal dominant disorder
• Abnormal calcium sensing
 • Abnormal calcium sensing receptors (CaSRs)
 • G-protein membrane receptors
 • Found in parathyroid and also kidneys
• Higher than normal set point for calcium
 • Normal PTH → ↑ calcium
 • More renal resorption of calcium
 • Low urinary calcium

2° Hyperparathyroidism
• Occurs in renal failure patients
• Chronically low serum calcium → ↑ PTH
• No symptoms of hypercalcemia
• Results in renal osteodystrophy
 • Bone pain (predominant symptom)
 • Fractures (weak bones 2° chronic high PTH levels)
 • If severe, untreated can lead to osteitis fibrosa cystica

↑PTH ↓Ca
Hypoparathyroidism

Causes
- Surgical excision
 - Often accidental after thyroid or neck surgery
- Key findings: post-op tingling, spasms
- Systemic diseases
 - Hemochromatosis (iron)
 - Wilson’s (copper)
 - Metastatic cancer

Causes

Thymic Aplasia
DiGeorge Syndrome

Immunodeficiency syndrome
- Failure of 3rd/4th pharyngeal pouch to form
 - Classic triad:
 - Loss of thymus (Loss of T-cells, recurrent infections)
 - Loss of parathyroid glands (hypocalcemia, tetany)
 - Congenital heart defects
- Presents in infancy/childhood with:
 - Hypocalcemia (hypoparathyroidism)
 - Recurrent infections
 - Congenital heart defects

APS-I
Autoimmune Polyendocrine Syndrome Type 1

Rare autosomal recessive disorder
- Mutations of autoimmune regulator (AIRE) gene
- AIRE also associated with chronic mucocutaneous candidiasis
- Triad:
 - Mucocutaneous candidiasis
 - Autoimmune hypoparathyroidism
 - Addison’s disease

APS-I
Autoimmune Polyendocrine Syndrome Type 1

Rare autosomal recessive disorder
- Mutations of autoimmune regulator (AIRE) gene
- AIRE also associated with chronic mucocutaneous candidiasis
- Triad:
 - Mucocutaneous candidiasis
 - Autoimmune hypoparathyroidism
 - Addison’s disease

Hypoparathyroidism

Treatment
- Calcium and calcitriol (vitamin D3)
- Recombinant human PTH available

Hypoparathyroidism

Treatment
- Calcium and calcitriol (vitamin D3)
- Recombinant human PTH available

Hypocalcemia

Signs/Symptoms
- Neuromuscular irritability
 - Nerves: tingling of fingers, toes, around mouth
 - Muscles: intermittent spasms (tetany)
- Tetany
 - Trousseau’s sign: Hand spasm with BP cuff inflation
 - Chvostek’s sign: Facial contraction with tapping on nerve
- Seizures

Hypocalcemia

Signs/Symptoms
- Neuromuscular irritability
 - Nerves: tingling of fingers, toes, around mouth
 - Muscles: intermittent spasms (tetany)
- Tetany
 - Trousseau’s sign: Hand spasm with BP cuff inflation
 - Chvostek’s sign: Facial contraction with tapping on nerve
- Seizures

Hypocalcemia

Signs/Symptoms
- Neuromuscular irritability
 - Nerves: tingling of fingers, toes, around mouth
 - Muscles: intermittent spasms (tetany)
- Tetany
 - Trousseau’s sign: Hand spasm with BP cuff inflation
 - Chvostek’s sign: Facial contraction with tapping on nerve
- Seizures

Pseudohypoparathyroidism

Group of disorders
- Kidney and bone unresponsiveness to PTH
- Abnormal PTH receptor function
- Many cases due to impaired G protein signaling
- Usually presents in childhood
- Hypocalcemia, hyperphosphatemia
- Elevated PTH (appropriate)

↑PTH ↓Ca
Calcium and PTH

- 1st look at calcium: Low/High
- Next, look at PTH: Low/High
- Same direction = parathyroid problem
 - Both ↑: Hyperparathyroidism
 - Both ↓: Hypoparathyroidism
- Opposite direction
 - Normal response to calcium problem
 - Renal failure (low serum calcium – 2nd hyperparathyroidism)
 - Renal losses (pseudohypoparathyroidism)

AHO
Albright’s Hereditary Osteodystrophy

- Form of pseudohypoparathyroidism
- Autosomal dominant
- Hypocalcemia, hyperphosphatemia, ↑ PTH
- Collection of clinical features
 - Short stature
 - Shortened fourth and fifth metacarpals
 - Rounded facies
MEN Syndromes

MEN 1

- 3 P's
 - Pituitary adenoma
 - Parathyroid adenoma
 - Pancreatic tumors

MEN 1

- Autosomal dominant
- Germline mutation of MEN1 gene (11q13)
 - Codes for the protein menin
 - Tumor suppressor
 - Classic example of 2 hit hypothesis
 - Patients born with 1 abnormal MEN 1 gene
 - Second "hit" occurs in endocrine glands

MEN 1

- Pituitary adenoma
 - Occurs in up to 70% of patients
 - Most commonly a prolactinoma
 - 2nd most common: GH secreting adenoma
 - Pituitary adenomas not seen in other MEN syndromes
 - Pituitary disease = MEN 1

MEN 1

- Parathyroid adenoma
 - Occurs in 94% of patients
 - First finding in ~90% of patients
 - Will present as hyperparathyroidism
 - Often detected when asymptomatic
 - May cause recurrent kidney stones

MEN Syndromes

Jason Ryan, MD, MPH
MEN 1

- Pancreatic-duodenal neuroendocrine tumors
- Most commonly a gastrinomas
- Zollinger-Ellison syndrome: multiple peptic ulcers
- Rarely insulinomas, glucagonomas, VIPomas

MEN 2A and 2B

- "Medullary" tumors
 - Medullary thyroid carcinoma
 - Pheochromocytoma (adrenal medulla)

MEN 2A

- Medullary plus parathyroid
- No physical findings

MEN 2B

- Medullary plus M’s
- Two key “phenotype” findings
 - Mucosal neuromas
 - Marfanoid appearance
- Usually no parathyroid involvement

MEN 2A and 2B

- MTC occurs earlier than sporadic cases
 - Sporadic: 60s
 - MEN: 30s
 - ~100% risk of MTC
 - Pheochromocytoma usually occurs after MTC

Medullary Carcinoma

- Cancer of parafollicular cells (C cells)
- Produces calcitonin
 - Lowers serum calcium
 - Normally minimal effect on calcium levels
 - With malignancy → hypocalcemia

MEN 1

- Pancreatic-duodenal neuroendocrine tumors
 - Most commonly a gastrinomas
 - Zollinger-Ellison syndrome: multiple peptic ulcers
 - Rarely insulinomas, glucagonomas, VIPomas

MEN 2B

- Same as 2A except:
 - Usually no parathyroid involvement
 - Two key physical findings
 - #1: Mucosal neuromas
 - Lips, tongue
 - #2: Marfanoid body habitus

Mikael Häggström/Wikipedia
MEN Syndromes

- Pituitary adenoma = MEN 1
- MTC or pheochromocytoma = MEN 2
- Parathyroid = MEN 1 or MEN 2A

MEN 2B Neuromas

- Benign growth of nerve tissue
- Often lips and tongue
- Sometimes intestinal neuromas

MEN 2B: Marfanoid

- Tall
- Long wing span
- High arched palate
- Skeletal deformations of spine:
 - Kyphoscoliosis: Curve to left/right
 - Lordosis: Curve forward
- No lens or aortic involvement (like Marfan's)

MEN 2A and 2B

- Autosomal dominant disorders
- Germ-line mutations in RET (chromosome 10)
- Proto-oncogene
- Codes for a receptor tyrosine kinase
- Important for cell growth/differentiation
- Gain of function mutations in MEN 2
 - Contrast with Hirschsprung disease of colon
 - Associated with loss of function mutations in RET

Thyroidectomy

- Often done prophylactically in MEN 2 syndromes
- Usually at a young age (<5 years old)

MEN 2B

- Marfanoid
 - Tall
 - Long wing span
 - High arched palate
 - Skeletal deformations of spine:
 - Kyphoscoliosis: Curve to left/right
 - Lordosis: Curve forward
 - No lens or aortic involvement (like Marfan's)

MEN 2B Neuromas

- Benign growth of nerve tissue
- Often lips and tongue
- Sometimes intestinal neuromas
Signaling Pathways

Intracellular Hormones
Receptor in cytoplasm/nucleus
- Progesterone
- Estrogen
- Testosterone
- Cortisol
- Aldosterone
- Thyroid hormone

Steroid Hormones
- Estradiol
- Testosterone
- Aldosterone
- Cortisol
- Cholesterol

Thyroid Hormones
- Two hormones: T3 and T4
- Synthesized from tyrosine and iodine

Intracellular Hormones
- All circulate bound to a protein
- Estrogen/testosterone: sex binding globulin (SBG)
- Thyroid hormone: thyroid binding globulin (TBG)
- Cortisol: corticosteroid-binding globulin (CBG)
- Aldosterone
- Progesterone

Hormone Effects
- Hormone
- Cell
- Effects

Jason Ryan, MD, MPH
JAK2 Mutation
• Associated with myeloproliferative disorders
• Gene for cytoplasmic tyrosine kinase
• Mutation →↑ tyrosine phosphorylation
• Progenitor cells: hypersensitivity to cytokines
• More growth; longer survival

JAK/STAT
• Many cytokines
 • IFN-γ, IL-2, IL-6
 • Bone marrow
 • Erythropoietin
 • G-CSF (granulocyte-colony stimulating factor)
 • Thrombopoietin
 • Others
 • Prolactin
 • Growth hormone
Cyclic AMP

- Hypothalamus
 - CRH, GHRH
- **Anterior pituitary hormones**
 - FSH, LH, ACTH, TSH
- **Parathyroid gland**
 - PTH
- Others
 - Glucagon
 - ADH (V2-receptor - water)
 - Histamine (H2-receptor - stomach acid)
 - HCG
 - MSH (melanocyte stimulating hormone)

G-Protein Linked Receptors

- Bind guanosine nucleotides (GDP, GTP)
- Transmit signals

Pituitary Hormones

- All have a **cAMP second messenger system**

Cyclic GMP

- Hormone

MSH

- Melanocyte Stimulating Hormone
- Causes hyperpigmentation in **Cushing’s disease**
- Proopiomelanocortin: Precursor of ACTH
- Also precursor of MSH (α/β/γ)
- MSH: Stimulates melanocytes to produce melanin
Cyclic GMP

- **BNP/ANP**
 - Release by cardiac myocytes
 - Antagonize RAAS system
 - Both bind natriuretic peptide receptors (NPR)
 - Vasodilation/diuresis
- **Nitric oxide**
 - Endothelium-derived relaxing factor (EDRF)
 - Synthesized by endothelial cells
 - Activates cGMP → smooth muscle relaxation/vasodilation
- **All are vasodilators**

Inositol Triphosphate

- **IP3**
- Hormone
- Phospholipase C
- Inositol 1,4,5-triphosphate (IP3)

G-Protein Linked Receptors

Hypothalamus

<table>
<thead>
<tr>
<th>Hypothalamus</th>
<th>2nd Messenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticotropin-releasing hormone (CRH)</td>
<td>cAMP</td>
</tr>
<tr>
<td>Thyrotropin-releasing hormone (TRH)</td>
<td>IP3</td>
</tr>
<tr>
<td>Gonadotropin-releasing hormone (GnRH)</td>
<td>IP3</td>
</tr>
<tr>
<td>Growth hormone-releasing hormone (GHRH)</td>
<td>cAMP</td>
</tr>
</tbody>
</table>
Anterior Pituitary

<table>
<thead>
<tr>
<th>Hormone</th>
<th>2nd Messenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenocorticotropic hormone (ACTH)</td>
<td>cAMP</td>
</tr>
<tr>
<td>Thyroid-stimulating hormone (TSH)</td>
<td>cAMP</td>
</tr>
<tr>
<td>Luteinizing hormone (LH)</td>
<td>cAMP</td>
</tr>
<tr>
<td>Follicle-stimulating hormone (FSH)</td>
<td>cAMP</td>
</tr>
<tr>
<td>Growth hormone (GH)</td>
<td>JAK/STAT</td>
</tr>
<tr>
<td>Proestrin</td>
<td>JAK/STAT</td>
</tr>
</tbody>
</table>

Others

- IP3
- ADH (V1 receptor)
- Histamine (H1 receptor)
- Gastrin
- Angiotensin II
- cAMP
- Histamine (H2 receptor)
- ADH (V2 receptor)