Boards & Beyond: Genetics Slides

Color slides for USMLE Step 1 preparation from the Boards and Beyond Website

Jason Ryan, MD, MPH

2020 Edition

Boards & Beyond provides a virtual medical school curriculum used by students around the globe to supplement their education and prepare for board exams such as USMLE Step 1.

This book of slides is intended as a companion to the videos for easy reference and note-taking. Videos are subject to change without notice. PDF versions of all color books are available via the website as part of membership.

Visit www.boardsbeyon.com to learn more.

Copyright © 2020 Boards and Beyond
All rights reserved.
Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic Principles</td>
<td>1</td>
</tr>
<tr>
<td>Gene Mapping</td>
<td>8</td>
</tr>
<tr>
<td>Meiosis</td>
<td>11</td>
</tr>
<tr>
<td>Hardy-Weinberg Law</td>
<td>15</td>
</tr>
<tr>
<td>Pedigrees</td>
<td>17</td>
</tr>
<tr>
<td>Imprinting</td>
<td>23</td>
</tr>
<tr>
<td>Down Syndrome</td>
<td>25</td>
</tr>
<tr>
<td>Trisomies</td>
<td>29</td>
</tr>
<tr>
<td>Muscular Dystrophy</td>
<td>32</td>
</tr>
<tr>
<td>Trinucleotide Repeat Disorders</td>
<td>36</td>
</tr>
<tr>
<td>Deletion Syndromes</td>
<td>40</td>
</tr>
<tr>
<td>Turner and Klinefelter Syndromes</td>
<td>43</td>
</tr>
</tbody>
</table>
Genetic Principles

Somatic Cell Replication

Mitosis

- S phase of cell cycle
- Chromosomes replicate → two sister chromatids
- M phase (mitosis): Cell divides
- Daughter cells will contain copies of chromosomes

Genetics

Termology

- Genome
 - DNA contained in nucleus of cells
 - "Hereditary material"
 - Passed to successive generations of cells
- Genes
 - Portions of DNA/genome
 - Code for proteins that carry out specific functions

Chromosomes

- Somatic cells (most body cells)
 - Diploid: two sets of chromosomes (23 pairs)
- Gametes (reproductive cells)
 - "Haploid": one set of chromosomes

Genetics

Chromosome

- Rod-shaped, cellular organelles
- Single, continuous DNA double helix strand
- Contains a collection of genes (DNA)
- 46 chromosomes arranged in 23 pairs
 - Chromosomes 1 through 22 plus X/Y (sex)
 - Two copies each chromosome 1 through 22 (homologous)
- Key point: Two copies of any gene of a chromosome

Cell Types

- Somatic cells (most body cells)
- Diploid: two sets of chromosomes (23 pairs)
- Gametes (reproductive cells)
 - "Haploid": one set of chromosomes

Genetic

Principles

Jason Ryan, MD, MPH
Meiosis

- Gametes (reproductive cells)
 - “Haploid”: one set of chromosomes
 - Produced by meiosis of germ line cells
 - Male and female gametes merge in fertilization
 - New “diploid” organism formed
- Key point: one gene from mother, one from father

Genetics

Terminology

- Allele
 - Alternative forms of gene
 - Often represented by letter (A, a)
 - Genetic polymorphism
 - Genes exist in multiple forms (alleles)
 - Locus (plural loci)
 - Location of allele on chromosome
- Wild type gene/allele
 - Common in most individuals
 - Example: A = wild type
 - Mutant gene/allele
 - Different from wild type
 - Caused by a mutation
 - Example: a = mutant
 - Individual: AA, Aa, aa
- Homozygous
 - Two identical copies of a gene (i.e. AA)
- Heterozygous
 - Two different copies of a gene (i.e. Aa)
- Somatic mutations
 - Acquired during lifespan of cell
 - Not transmitted to offspring
- Germ line mutations
 - DNA of sperm/eggs
 - Transmitted to offspring
 - Found in every cell in body
- Genotype
 - Genetic makeup of a cell or individual
 - Often refers to names of two copies of a gene
 - Example: Gene A from father, Gene B from mother
 - Genotype: AB
 - Or two alleles of gene A (A and a): AA, Aa, aa
- Phenotype
 - Physical characteristics that result from genotype
 - Example: AB = blue eyes; BB = green eyes
- Locus (plural loci)
 - Location of allele on chromosome
- DNA →gene →allele →locus →chromosome
- Meiosis
 - Gametes (reproductive cells)
 - “Haploid”: one set of chromosomes
 - Produced by meiosis of germ line cells
 - Male and female gametes merge in fertilization
 - New “diploid” organism formed
- Key point: one gene from mother, one from father
Genetics

Terminology
- **Dominant gene/allele**
 - Determines phenotype even in individuals with single copy
 - Often denoted with capital letters
 - Example: Gene has two alleles: A, a
 - Aa, AA all have A phenotype
- **Recessive gene/allele**
 - Requires two copies to produce phenotype
 - Often denoted with lower case letters
 - Example: aa = a phenotype; Aa and AA = A phenotype

Codominance
- Both alleles contribute to phenotype
- **Classic example: ABO Blood Groups**
 - A gene = A antigen on blood cells
 - B gene = B antigen
 - O gene = No A or B antigen
 - AB individuals
 - Express A and B antigens

α-1 Antitrypsin Deficiency
- May cause early COPD and liver disease
- **Mutations in AAT gene (produces α1 antitrypsin)**
 - M = normal allele
 - S = moderately low levels protein
 - Z = severely reduced protein levels
- **Combination of alleles determines protein levels**
 - MM = normal
 - ZZ = severe deficiency
 - Other combinations = variable risk of disease

Penetrance
- Proportion with allele that express phenotype
- **Incomplete penetrance**
 - Not all individuals with disease mutation develop disease
 - Commonly applied to autosomal dominant disorders
 - Not all patients with AD disease gene develop disease
 - Example BRCA1 and BRCA2 gene mutations

BRCA1 and BRCA2
- Genetic mutations that lead to cancer
- Germline gene mutations
- Autosomal dominant
- Not all women with mutations develop cancer
- Implications:
 - Variable cancer risk reduction from prophylactic surgery

Expressivity
- **Variations in phenotype** of gene
- Different from penetrance
- **Classic case: Neurofibromatosis type (NF1)**
 - Neurocutaneous disorder
 - Brain tumors, skin findings
 - Autosomal dominant disorder
 - 100% penetrance (all individuals have disease)
 - Variable disease severity (tumors, skin findings)
Two-Hit Origin of Cancer

- Mutations in **tumor suppressor genes**
 - Genes with many roles
 - Gatekeepers that regulate cell cycle progression
 - DNA repair genes
 - Heterozygous mutation = no disease
 - Mutation of both alleles \(\rightarrow \) cancer
 - Cancer requires "two hits"
 - "Loss of heterozygosity"

Pleiotropy

- One gene = multiple phenotypic effects and traits
 - Example: single gene mutation affects skin, brain, eyes
 - Clinical examples:
 - Phenylketonuria (PKU): skin, body odor, mental disability
 - Marfan syndrome: Limbs, eyes, blood vessels
 - Cystic fibrosis: Lungs, pancreas
 - Osteogenesis imperfecta: Bones, eyes, hearing

Other Examples

- **HNPCC (Lynch syndrome)**
- **Hereditary nonpolyposis colorectal cancer**
- **Inherited colorectal cancer syndrome**
- Germline mutation in DNA mismatch repair genes
- Second allele is inactivated by mutation

Two-Hit Origin of Cancer

- **Classic example:** Retinoblastoma
 - Rare childhood eye malignancy
 - Hereditary form (40% of cases)
 - One gene mutated in all cells at birth (germline mutation)
 - Second somatic mutation "hit"
 - Cancer requires only one somatic mutation
 - Frequent, multiple tumors
 - Tumors at younger age

Two-Hit Origin of Cancer

- **Retinoblastoma:** Sporadic form (non-familial)
 - Requires two somatic "hits"
 - Two mutations in same cell = rare
 - Often a single tumor
 - Occurs at a later age

Two-Hit Origin of Cancer

- **HNPCC (Lynch syndrome)**
 - Hereditary nonpolyposis colorectal cancer
 - Inherited colorectal cancer syndrome
 - Germline mutation in DNA mismatch repair genes
 - Second allele is inactivated by mutation

Pleiotropy

- One gene = multiple phenotypic effects and traits
 - Example: single gene mutation affects skin, brain, eyes
 - Clinical examples:
 - Phenylketonuria (PKU): skin, body odor, mental disability
 - Marfan syndrome: Limbs, eyes, blood vessels
 - Cystic fibrosis: Lungs, pancreas
 - Osteogenesis imperfecta: Bones, eyes, hearing

Other Examples

- **HNPCC (Lynch syndrome)**
- **Hereditary nonpolyposis colorectal cancer**
- **Inherited colorectal cancer syndrome**
- Germline mutation in DNA mismatch repair genes
- Second allele is inactivated by mutation

Two-Hit Origin of Cancer

- **Classic example:** Retinoblastoma
 - Rare childhood eye malignancy
 - Hereditary form (40% of cases)
 - One gene mutated in all cells at birth (germline mutation)
 - Second somatic mutation "hit"
 - Cancer requires only one somatic mutation
 - Frequent, multiple tumors
 - Tumors at younger age
McCune-Albright Syndrome

- Rare disorder
- Affects many endocrine organs
- Precocious puberty
 - Menstruation may occur at 2 years old
- Fibrous growth in bones
 - Fractures, deformity
- Skin pigmentation
 - Café-au-lait spots
 - Irregular borders ("Coast of Maine")

Mosaicism

- **Germline mosaicism**
 - Can be passed to offspring
 - Pure germline mosaicism difficult to detect
 - Not present in blood/tissue samples used for analysis
 - Offspring disease may appear sporadic
 - Can present as recurrent "sporadic" disease in offspring

- **Somatic mosaicism**
 - Gene differences in tissues/organs
 - Mutations in cells → genetic changes
 - Individual will be a mixture of cells

Two-Hit Origin of Cancer

Other Examples

- **Li-Fraumeni syndrome**
 - Syndrome of multiple malignancies at an early age
 - Sarcoma, Breast, Leukemia, Adrenal Gland (SBLA) cancer syndrome
 - Germline mutation in tumor suppressor gene TP53
 - Codes for tumor protein p53
 - Delays cell cycle progression to allow for DNA repair

- **Familial Adenomatous Polyposis (FAP)**
 - Germline mutation of APC gene (tumor suppressor gene)
 - Always (100%) progresses to colon cancer
 - Treatment: Colon removal (colectomy)

- **45X/46XX mosaic Turner syndrome** (milder form)
- Rare forms of Down syndrome

- **Germline** mosaicism
 - Can be passed to offspring
 - Pure germline mosaicism difficult to detect
 - Not present in blood/tissue samples used for analysis
 - Offspring disease may appear sporadic
 - Can present as recurrent "sporadic" disease in offspring

- **Somatic** mosaicism
 - Gene differences in tissues/organs
 - Mutations in cells → genetic changes
 - Individual will be a mixture of cells

- **53X/46XX mosaic Turner syndrome** (milder form)
- Rare forms of Down syndrome

Two-Hit Origin of Cancer

Other Examples

- **Li-Fraumeni syndrome**
 - Syndrome of multiple malignancies at an early age
 - Sarcoma, Breast, Leukemia, Adrenal Gland (SBLA) cancer syndrome
 - Germline mutation in tumor suppressor gene TP53
 - Codes for tumor protein p53
 - Delays cell cycle progression to allow for DNA repair

- **Familial Adenomatous Polyposis (FAP)**
 - Germline mutation of APC gene (tumor suppressor gene)
 - Always (100%) progresses to colon cancer
 - Treatment: Colon removal (colectomy)
Allelic heterogeneity

- Allele = Alternative form of gene
- Allele 1 = mutation X
- Allele 2 = mutation Y
- Both X and Y cause same disease
- X and Y found at same chromosomal locus (position)
- Many alleles possess multiple mutant forms
- One disease = multiple genes = single location

McCune-Albright Syndrome

- “Postzygotic” mutation
- Occurs after fertilization
- Only some tissues/organs affected (mosaicism)
- Clinical phenotype varies depending on which tissues affected
- Germline occurrences of mutation are lethal
- Entire body effected
- Cells with mutation survive only if mixed with normal cells

Genetic Heterogeneity

- Same phenotype from different genes/mutations
- Different mutations of same allele → same disease
- Different gene (loci) mutations → same disease
- Multiple gene mutations often cause same disease
- Many diseases have multiple genotypes

McCune-Albright Syndrome

- Caused by sporadic mutation in development
- Not inherited
- Somatic mutation of GNAS gene
- Codes for alpha subunit of G3 protein
- Activates adenylyl cyclase
- Continued stimulation of cAMP signalling

Allelic heterogeneity

- Beta Thalassemia
 - Mutation in beta globin gene
 - Wide spectrum of disease depending on mutation
 - $\beta^0 = \text{no function}; \beta^+ = \text{some function}$
- Cystic Fibrosis
 - Mutation in CFTR gene
 - Over 1400 different mutations described
Locus heterogeneity

- Mutations in different loci cause same phenotype
- Example: Retinitis Pigmentosa
 - Causes visual impairment
 - Autosomal dominant, recessive, and X-linked forms
 - Mutations at 43 different loci can lead to disease
- One disease = multiple genes = multiple locations
Gene Mapping

Independent Assortment
- Suppose father has two alleles of F and M genes
 - F and f
 - M and m
 - F and M found on different chromosomes
 - Independent assortment
 - Occurs if F and M genes can independently recombine
 - 25% chance of each combination in gamete

Genetic Recombination
- During meiosis chromosomes exchange segments
- Child inherits “patchwork” of parental chromosomes
- Never exact copy of parental chromosomes

Genetic Mapping

Father Mother
Child 1 Child 2

Independent Assortment
- What if genes on same chromosome?
- If very far apart, crossover may occur in meiosis
- Result: Same combinations as separate chromosomes

Genetic Mapping

Jason Ryan, MD, MPH

Father
Chromosome 1
F M
Chromosome 2
2 3
f m
Gamete 1
M f
m m
M
25% 25% 25% 25%

Independent Assortment
- What if genes on same chromosome?
- If very far apart, crossover may occur in meiosis
- Result: Same combinations as separate chromosomes

Genetic Mapping

Father
Chromosome 1
F M
Chromosome 2
2 3
f m
Gamete 1
M f
m m
M
25% 25% 25% 25%
Linkage
- Tendency of alleles to transmit together
 - More linkage = less independent assortment
 - Close together ($\theta = 0$) = tightly linked
 - Far apart ($\theta = 0.5$) = unlinked

Genetic Mapping
- **Linkage Mapping**
 - Done by studying families
 - Track frequency of genetic recombination
 - Use frequency to determine relative gene location

<table>
<thead>
<tr>
<th>Combination</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B</td>
<td>0.15</td>
</tr>
<tr>
<td>A-C</td>
<td>0.08</td>
</tr>
<tr>
<td>C-B</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Independent Assortment
- What if genes on same chromosome?
 - If very far apart, crossover may occur in meiosis
 - Result: Same combinations as separate chromosomes

Recombination
- Any break here allows A and B to recombine
- Any break here allows B and C to recombine
- Two copies of parental chromosome

Recombination Frequency
- Frequency of recombined genes (F_m or f_M)
 - Denoted by Greek letter theta (θ)
 - Ranges from zero to 0.5
 - Key point: recombination frequency α distance
 - Close together: $\theta = 0$
 - Far apart: $\theta = 0.5$
 - Used for genetic mapping of genes
Linkage Disequilibrium
- Used to study genes that are very close together
 - Recombination very rare
 - Family studies impractical
- Done by studying large populations

Linkage Equilibrium
- Gene A has two polymorphisms: A and a
 - A found in 50% of individuals
 - a in 50%
- Gene B has two polymorphisms: B and b
 - B found in 90% of individuals
 - b in 10%

Linkage Disequilibrium
- Population frequencies higher/lower than expected
 - AB = 0.75 (higher than expected 0.45)
 - aB = 0.45
 - Ab = 0.05
 - ab = 0.05
- This is linkage equilibrium

Linkage Disequilibrium
- Used to study genes that are very close together
 - Recombination very rare
 - Family studies impractical
- Done by studying large populations

Linkage Disequilibrium
- Consider new gene mutation A
 - Initially close to gene B
 - AB transmitted together in a population
 - Eventually A and B genes may recombine
 - Depends on distance apart and size of population
 - LD greatest when gene first enters population (i.e. mutation)
 - Fades with successive generations (i.e. population size)
 - Fades if distance between genes is greater

Linkage Disequilibrium
- Linkage disequilibrium affected by:
 - Genetic distance
 - Time alleles have been present in population
 - Different populations: different degrees of linkage disequilibrium

A = 0.5
a = 0.5
B = 0.9
b = 0.1
Meiosis

Meiosis begins at puberty.

Meiosis

- Diploid cells give rise to haploid cells (gametes)
- Unique to "germ cells"
 - Spermatocytes
 - Oocytes
- Two steps: Meiosis I and Meiosis II

Meiosis I

- Diploid → Haploid ("reductive division")
- Separates homologous chromosomes

Meiosis II

- Chromatids separate
- Four daughter cells

Spermatogenesis

Begins at puberty
Oogenesis
- "Primary oocytes" form in utero
 - Diploid cells
 - Just beginning meiosis I
 - Arrested in prophase of meiosis I until puberty
- At puberty
 - A few primary oocytes complete meiosis I each cycle
 - Some form polar bodies → degenerate
 - Some form secondary oocytes (haploid)
 - Meiosis II begins → arrests in metaphase
 - Fertilization → completion of meiosis II

Aneuploidy
- Abnormal chromosome number
 - Extra or missing chromosome
- Disomy = two copies of a chromosome (normal)
 - Monosomy = one copy
 - Trisomy = three copies

Meiotic Nondisjunction
- Failure of chromosome pairs to separate
- Most common mechanism of aneuploidy
- Can occur in meiosis I or II

Meiosis I Nondisjunction
- Blue = Paternal
 - Red = Maternal
 - Homologous Chromosomes Fail to Separate
 - Meiosis I
 - Meiosis II begins → arrests in metaphase
 - Meiosis II NDJ
 - Normally no chromosomes

Meiosis II Nondisjunction
- Blue = Paternal
 - Red = Maternal
 - Meiosis I
 - Meiosis II
 - Haploid
 - Diploid Mixture Genes

Nondisjunction
- Blue = Paternal
 - Red = Maternal
 - Meiosis I NDJ
 - Normally no chromosomes
 - Meiosis II NDJ
 - Normally no chromosomes
Monosomy
- Fertilization of 1n (normal) and 0n gamete
- Usually not viable
- **Turner syndrome (45,X)**
 - Only one sex chromosome

Trisomy
- Fertilization of 1n (normal) and 2n gametes
- Not compatible with life for most chromosomes
- Exceptions:
 - Trisomy 21 = Down syndrome (95% cases due to NDJ)
 - Trisomy 18 = Edward syndrome
 - Trisomy 13 = Patau syndrome

Trisomy
- Maternal meiosis I NDJ errors are a common cause
 - Meiosis I protracted in females
 - Begins prenatally, completed at ovulation years later
 - Advanced maternal age → ↑ risk trisomy

Monosomy
- Fertilization of 1n (normal) and 0n gamete
- Usually not viable
- **Turner syndrome (45,X)**
 - Only one sex chromosome

Trisomy
- Maternal meiosis I NDJ errors are a common cause
 - Meiosis I protracted in females
 - Begins prenatally, completed at ovulation years later
 - Advanced maternal age → ↑ risk trisomy

Uniparental Disomy
- Child has two copies of one parent’s chromosomes
- No copies of other parent's chromosomes
- Father = 21A and 21B; Mother = 21C and 21D
- Child AA (isodisomy) = Meiosis II error (father)
- Child CD (heterodisomy) = Meiosis I error (mother)
Robertsonian Translocation
- Fusion of long arms of two chromosomes
- Occurs in acrocentric chromosomes
 - Chromosomes with centromere near end (13, 14, 21, 22)

Karyotype
- Can be done in couples with **recurrent fetal losses**
- Used to diagnose chromosomal imbalances

Robertsonian Translocation
- Carrier has only 45 chromosomes (one translocated)
- Loss of short arms → normal phenotype (no disease)
- 13-14 and 14-21 are most common
- Main clinical consequences
 - Many monosomy and trisomy gametes
 - Frequent **spontaneous abortions**
 - Carrier may have child with **Down syndrome** (trisomy 21)
Hardy-Weinberg Law

Hardy-Weinberg Law

• Large population
• Completely random mating
• No mutations
• No migration in/out of population
• No natural selection

Example
• Given gene has two possible alleles: A and a
• Allele A found in 40% of genes (p = 0.40)
• Allele a found in 60% of genes (q = 0.60)
• What is frequency of genotypes AA, Aa, and aa?

\[p + q = 1 \]

\[p^2 + 2pq + q^2 = 1 \]

\[p^2 = 0.16 \] → 16% of individuals in population are AA
\[2pq = 0.48 \] → 48% of individuals in population are Aa
\[q^2 = 0.36 \] → 36% of individuals in population are aa

Hardy-Weinberg Law

• Frequency of AA = \(p^2 = 0.16 \)
• Frequency Aa = \(2pq = 0.48 \)
• Frequency aa = \(q^2 = 0.36 \)

\[p + q = 1 \]

\[p^2 + 2pq + q^2 = 1 \]

\[p = 0.4 \]
\[q = 0.6 \]

\[p^2 = 0.16 \]
\[2pq = 0.48 \]
\[q^2 = 0.36 \]
Hardy-Weinberg Law

- If assumptions met, allele frequencies do not change from one generation to the next
- "Hardy-Weinberg equilibrium"

Very useful in autosomal recessive diseases
- Disease (aa) frequency often known
 - Example: 1/5000 individuals have disease
 - Carrier (Aa) frequency often unknown

Disease X caused by recessive gene
- Disease X occurs in 1/4500 children
 - \(q^2 = \frac{1}{4500} = 0.0002 \)
 - \(q = \sqrt{0.0002} = 0.015 \)
 - \(p + q = 1 \)
 - \(p = 1 - 0.015 = 0.985 \)
 - Carrier frequency = 2pq
 - \(2 \times (0.985) \times (0.015) = 0.029 \approx 3\% \)
 - Very rare diseases p close to 1.0
 - Carrier frequency \(\approx 2q \)

Very useful in autosomal recessive diseases
- Disease (aa) frequency often known
 - Example: 1/5000 individuals have disease
 - Carrier (Aa) frequency often unknown

X-linked disease
- Two male genotypes (X^-Y or XY)
- Three female genotypes (XX or X^-X or X^-Y)

If assumptions met, allele frequencies do not change from one generation to the next
- "Hardy-Weinberg equilibrium"
Pedigrees

Jason Ryan, MD, MPH

Pedigree

- Visual representation of a family
- Often used to study single gene disorders
 - Gene passed down through generations
 - Some members have disease
 - Some members are carriers
- Several typical patterns
 - Autosomal recessive genes
 - Autosomal dominant genes
 - X-linked genes

Pedigree Symbols

- Unaffected Male
- Affected Male
- Unaffected Female
- Affected Female
- Marriage
- Children

Autosomal Recessive

- Two alleles for a gene (i.e. A = normal; a = disease)
- Only homozygotes (aa) have disease

<table>
<thead>
<tr>
<th>Father</th>
<th>Mother</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>a</td>
<td>aA</td>
</tr>
</tbody>
</table>

- If both parents are carriers (Aa)
 - Child can have disease (aa)
 - Only 1 in 4 chance of child with disease
 - 2 of 4 children will be carriers (Aa)
 - 1 of 4 children NOT carriers (AA)

<table>
<thead>
<tr>
<th>Father</th>
<th>Mother</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>a</td>
<td>aA</td>
</tr>
</tbody>
</table>

- If both parents are carriers (Aa)
 - 50% chance mother gives a to child
 - 50% chance father gives a to child
 - (0.5) x (0.5) = 0.25 chance child has disease
Autosomal Dominant
- Familial hypercholesterolemia
- Huntington’s disease
- Marfan syndrome
- Hereditary spherocytosis
- Achondroplasia
- Many others

Autosomal Recessive
- Cystic fibrosis
- Sickle cell anemia
- Hemochromatosis
- Wilson’s disease
- Many others

Autosomal Dominant
- Males and females affected equally
- One affected parent → 50% offspring with disease
- Male-to-male transmission occurs

Autosomal Recessive
- Males and females affected equally
- Few family members with disease
- Often many generations without disease
- Increased risk: Consanguinity
 - Parents are related
 - Share common ancestors

Autosomal Dominant
- Two alleles for a gene (i.e. A = disease; a = no disease)
- Heterozygotes (Aa) and homozygotes (AA) have disease
Incomplete Dominance

Semidominant

- Heterozygote phenotype different from homozygote
 - Heterozygotes: less severe form of disease
 - Homozygotes: more severe

X-linked Disorders

- Disease gene on X chromosome (X_d)
 - Always affects males (X_dY)
 - Females (X_dX) variable
 - X-linked recessive = females usually NOT affected
 - X-linked dominant = females can be affected

X-linked Recessive

- No male-to-male transmission
 - All fathers pass Y chromosome to sons
 - Sons of heterozygous mothers: 50% affected
 - Classic examples: Hemophilia A and B

Familial hypercholesterolemia

- Heterozygotes: total cholesterol 350–550mg/dL
 - Homozygotes: 650–1000mg/dL

Incomplete Dominance

Semidominant

- Classic example: Achondroplasia
 - Autosomal dominant disorder of bone growth
 - Heterozygotes (Dd): Dwarfism
 - Homozygotes (dd): Fatal

X-linked Recessive

- All males with disease gene have disease
 - Most females with disease gene are carriers

Familial hypercholesterolemia

- Heterozygotes: total cholesterol 350–550mg/dL
 - Homozygotes: 650–1000mg/dL

X-linked Recessive

- Females very rarely develop disease
 - Usually only occurs if homozygous for gene
 - Father must have disease and mother must be carrier
 - Females can develop disease with skewed lyonization
Mitochondrial Genes

- Each mitochondria contains DNA (mtDNA)
- Code for mitochondrial proteins
- Organs most affected by gene mutations:
 - CNS
 - Skeletal muscle
 - Rely heavily on aerobic metabolism

X-linked Dominant

- Occur in both sexes
- Every daughter of affected male has disease
 - All daughters get an X chromosome from father
 - Affected father MUST give disease X chromosome to daughter

Lyonization

- Random process
- Different inactive X chromosomes in different cells
- Occurs early in development (embryo <100 cells)
- Results in X mosaicism in females
- May cause symptoms in females X-recessive disorders
 - "Skewed lyonization"

X-linked Dominant

- Can mimic autosomal dominant pattern
- Key difference: No male-to-male transmission
 - Fathers always pass Y chromosome to sons

X-linked Dominant

- More severe among males (absence of normal X)
- Classic example: Fragile X syndrome
 - 2nd most common genetic cause of intellectual disability (Down)
 - More severe in males
 - Often features of autism
 - Long, narrow face, large ears and jaw

X-linked Dominant

- Results in inactivated X chromosome in females
 - One X chromosome undergoes "Lyonization"
 - Condensed into heterochromatin with methylated DNA
 - Creates a Barr body in female cells

Lyonization

- Occur in both sexes
- Every daughter of affected male has disease
 - All daughters get an X chromosome from father
 - Affected father MUST give disease X chromosome to daughter

Lyonization

- Results in inactivated X chromosome in females
- One X chromosome undergoes "Lyonization"
- Condensed into heterochromatin with methylated DNA
- Creates a Barr body in female cells

Lyonization

- Random process
- Different inactive X chromosomes in different cells
- Occurs early in development (embryo <100 cells)
- Results in X mosaicism in females
- May cause symptoms in females X-recessive disorders
 - "Skewed lyonization"

X-linked Dominant

- Can mimic autosomal dominant pattern
- Key difference: No male-to-male transmission
 - Fathers always pass Y chromosome to sons

X-linked Dominant

- Occur in both sexes
- Every daughter of affected male has disease
 - All daughters get an X chromosome from father
 - Affected father MUST give disease X chromosome to daughter

Lyonization

- Random process
- Different inactive X chromosomes in different cells
- Occurs early in development (embryo <100 cells)
- Results in X mosaicism in females
- May cause symptoms in females X-recessive disorders
 - "Skewed lyonization"
Polygenic Inheritance
- Many traits/diseases depend on multiple genes
 - Height
 - Heart disease
 - Cancer
 - "Run in families"
 - Do not follow a classic Mendelian pattern

Mitochondrial Myopathies
- Rare disorders
- Weakness (myopathy), confusion, lactic acidosis
- Wide range of clinical disease expression
- Classic hallmark: Red, ragged fibers
 - Seen on muscle biopsy with special stains
 - Caused by compensatory proliferation of mitochondria
 - Accumulation of mitochondria in muscle fibers visualized
 - Mitochondria appear bright red against blue background

Mitochondrial Disorders
- Mitochondrial DNA inherited from mother
 - Sperm mitochondria eliminated from embryos
- Homoplasmic mothers → all children have mutation
- Heteroplasmic mothers → variable

Mitochondrial Genes
- Heteroplasmy
 - Multiple copies of mtDNA in each mitochondrion
 - Multiple mitochondria in each cell
 - All normal or abnormal: Homoplasmy
 - Mixture: Heteroplasmy
 - Mutant gene expression highly variable
 - Depends on amount of normal versus abnormal genes
 - Also number of mutant mitochondria in each cell/tissue

Ragged Red Fibers
- Mitochondrial Myopathies
 - Rare disorders
 - Weakness (myopathy), confusion, lactic acidosis
 - Wide range of clinical disease expression
 - Classic hallmark: Red, ragged fibers
 - Seen on muscle biopsy with special stains
 - Caused by compensatory proliferation of mitochondria
 - Accumulation of mitochondria in muscle fibers visualized
 - Mitochondria appear bright red against blue background

Mitochondrial Genes
- Heteroplasmy
 - Multiple copies of mtDNA in each mitochondrion
 - Multiple mitochondria in each cell
 - All normal or abnormal: Homoplasmy
 - Mixture: Heteroplasmy
 - Mutant gene expression highly variable
 - Depends on amount of normal versus abnormal genes
 - Also number of mutant mitochondria in each cell/tissue

Mitochondrial Disorders
- Mitochondrial DNA inherited from mother
 - Sperm mitochondria eliminated from embryos
- Homoplasmic mothers → all children have mutation
- Heteroplasmic mothers → variable
Multifactorial Inheritance

- Genes, lifestyle, environment → disease
- Seen in many diseases
 - Diabetes
 - Coronary artery disease
 - Hypertension
Imprinting

Jason Ryan, MD, MPH

Imprinting Syndromes

- Prader-Willi and Angelman syndromes
- Both involve abnormal chromosome 15q11-q13
- Paternal copy abnormal: Prader-Willi
- Maternal copy abnormal: Angelman
- Differences due to imprinting

Imprinting Syndromes

- PWS genes
 - Normally expressed on paternal chromosome 15
 - NOT normally expressed on maternal copy
- UBE3A
 - Normally expressed on maternal chromosome 15
 - NOT normally expressed on paternal copy

Imprinting

- Occurs during gametogenesis (before fertilization)
 - Genes “marked” as being parental/maternal in origin
 - Often by methylation of cytosine in DNA

Imprinting

- Epigenetic phenomenon
 - Alteration in gene expression
 - Different expression in maternal/paternal genes

Imprinting

- After conception, imprinting controls gene expression
 - “Imprinted genes”: Only one allele expressed
 - Non-imprinted genes: Both alleles expressed

Cytosine Methylcytosine

Imprinting

- Epigenetic phenomenon
- Alteration in gene expression
- Different expression in maternal/paternal genes

Imprinting

- After conception, imprinting controls gene expression
- “Imprinted genes”: Only one allele expressed
- Non-imprinted genes: Both alleles expressed
Prader-Willi Syndrome

- **PWS**
 - Loss of function of *paternal copy* of PWS gene

Angelman Syndrome

- **Frequent laughter/smiling**
 - “Happy puppet”
- **Seizures (80% patients)**
- **Ataxia**
- **Severe intellectual disability**

Prader-Willi Syndrome

- Majority of cases caused by deletions
- Only about 3-5% from uniparental disomy
 - Paternal disomy much less common than maternal
 - Non-disjunction less common

Angelman Syndrome

- Abnormal *maternal* chromosome 15q11-q13
 - Lack of expression of UBE3A

Prader-Willi Syndrome

- ~75% cases from deletion of paternal gene
 - Most cases due to sporadic mutation
- ~25% from maternal *uniparental disomy*
 - Two copies of maternal gene inherited
 - No copies of paternal gene

Angelman Syndrome

- ~75% cases from deletion of paternal gene
 - Most cases due to sporadic mutation
- ~25% from maternal *uniparental disomy*
 - Two copies of maternal gene inherited
 - No copies of paternal gene

- Loss of function of paternal copy of PWS gene

- Most common “syndromic” cause of obesity
 - Hypotonia
 - Newborn feeding problems
 - Poor suck reflex
 - Delayed milestones
 - Hyperphagia and obesity
 - Begins in early childhood
 - Intellectual disability (mild)
 - Contrast with AS (severe)
 - Hypogonadism
 - Delayed puberty

- Abnormal maternal chromosome 15q11-q13
 - Lack of expression of UBE3A
Down Syndrome

Jason Ryan, MD, MPH

Dysmorphic Features

- Most common liveborn chromosome abnormality
- Most common form intellectual disability
- Other key features
 - "Dysmorphic" features (face, hands, stature)
 - Congenital malformations (heart, GI tract)
 - Early Alzheimer’s disease
 - Increased risk of malignancy
- Clinical phenotype variable
 - Range of features from mild to severe

Down Syndrome

- Prominent epicanthal folds
 - Skin of the upper eyelid
 - Covers the inner corner of the eye
- Upslanting palpebral fissures
 - Separation upper/lower eyelids
 - Outer corners higher than inner

Trisomy Disorders

- Down syndrome (21)
- Edward syndrome (18)
- Patau syndrome (13)

Brushfield Spots

- White spots on iris
Gastrointestinal Anomalies

- Occur in 5% of patients
- Duodenal atresia or stenosis (most common)
- Hirschsprung disease
- More common than in general population

Intestinal Disability

- Almost all patients affected
- Wide range of cognitive impairment
- Normal IQ ~100
- Mild Down syndrome: 50 to 70
- Severe Down syndrome: 20 to 35

Other Physical Features

- Hypotonia
 - Often identified at birth
 - Short stature

Congenital Heart Disease

- Occurs in 50% of patients
- Most commonly endocardial cushion defects
 - Involves atrioventricular septum
 - Forms base of interatrial septum
 - Forms upper interventricular septum

Dysmorphic Features

- Short, broad hands
- Transverse palmar crease
- "Sandal gap"
 - Space between 1st/2nd toes

Congenital Heart Disease

- Common defects:
 - Primum ASD
 - VSD (holosystolic murmur)

Other Physical Features

- Hypotonia
- Often identified at birth
- Short stature
Down Syndrome

Genetics

- Rarely (<2% cases) caused by mitotic error
- Error in mitosis of somatic cells after fertilization
- May result in somatic mosaicism
- Some cells trisomy 21, others normal
- Can lead to milder features of DS
- No association with advanced maternal age

Prenatal Screening

- Definitive test: Fetal karyotype
- Chorionic villus sampling (placental tissue)
- Amniocentesis (amniotic fluid)

Genetics

- Rarely caused by Robertsonian translocation
- 2-3% of cases
- Chromosome 21 fused with another chromosome
- Most commonly chromosome 14 or 10
- Two copies 21 passed to fetus from one parent
- No increased risk with advanced maternal age
- High recurrence risk within families

Alzheimer’s Disease

- Occurs early
- Average age of onset in 50s
- Amyloid Precursor Protein (APP)
 - Found on chromosome 21
 - Breakdown forms beta amyloid
 - Amyloid plaques form in AD

Malignancy

- Lifetime risk of leukemia about 1 to 1.5%
- Often occurs in childhood
- Acute lymphoblastic leukemia
 - Risk 10 to 20 times higher in DS
- Acute myeloid leukemia
 - M7 subtype
 - Megakaryoblastic leukemia

- Lifetime risk of leukemia about 1 to 1.5%
- Often occurs in childhood
- Acute lymphoblastic leukemia
 - Risk 10 to 20 times higher in DS
- Acute myeloid leukemia
 - M7 subtype
 - Megakaryoblastic leukemia

VashiDonsk/Wikipedia

- Lifetime risk of leukemia about 1 to 1.5%
- Often occurs in childhood
- Acute lymphoblastic leukemia
 - Risk 10 to 20 times higher in DS
- Acute myeloid leukemia
 - M7 subtype
 - Megakaryoblastic leukemia

VashiDonsk/Wikipedia
Down Syndrome
First Trimester Screening
- Maternal blood testing
 - Pregnancy-associated plasma protein-A (PAPP-A)
 - Glycoprotein produced by placenta
 - Lower levels in pregnancies with fetal Down syndrome
 - Free or total β-hCG
 - Hormone produced by placenta
 - Levels are higher in pregnancies with fetal Down syndrome
- Fetal ultrasound
 - Small, poorly-formed nasal bones
 - Nuchal translucency
 - Fluid under at back of neck

Down Syndrome
Second Trimester Screening
- α-fetoprotein and estriol (uE3)
 - Reduced in pregnancies with fetal Down syndrome
 - NOTE: Increased AFP associated with neural tube defects
 - β-hCG and inhibin A
 - Increased in pregnancies with fetal Down syndrome
 - Inhibin A synthesized by placenta
 - “Quad screen”
Edward Syndrome
Trisomy 18
• Congenital heart disease (50% babies)
• Ventricular septal defects
• Patent ductus arteriosus
• Gastrointestinal defects (75% cases)
• Meckel’s diverticulum
• Malrotation
• Omphalocele

Trisomy Disorders
• All associated with advanced maternal age
• All most commonly due to meiotic nondisjunction
• Common features
 • Intellectual disability
 • Physical deformities
 • Congenital heart defects

Edward Syndrome
Trisomy 18
• 2nd most common trisomy in live births
• Severe intellectual disability
• Often female (3:1 female to male ratio)

Edward Syndrome
Trisomy 18
• Poor intrauterine growth – low birth weight
• Abnormally shaped head
 • Very small
 • Prominent back of skull (occiput)
• Low set ears
• Small jaw and mouth
• Clenched fists with overlapping fingers
• “Rockerbottom” (curved) feet

Edward Syndrome
Trisomy 18
• Congenital heart disease (50% babies)
 • Ventricular septal defects
 • Patent ductus arteriosus
• Gastrointestinal defects (75% cases)
 • Meckel’s diverticulum
 • Malrotation
 • Omphalocele
Edward Syndrome
Trisomy 18
- Many cases die in utero
- 50% affected infants die in first two weeks
- Only 5 to 10% survive first year

Edward Syndrome
Screening
- Physical features often diagnosed by fetal ultrasound
 - Limb deformities, congenital heart defects

First Trimester
<table>
<thead>
<tr>
<th></th>
<th>Down</th>
<th>Edward</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPP-A</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>B-hCG</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>

Edward Syndrome
Screening
Second Trimester
<table>
<thead>
<tr>
<th></th>
<th>Down</th>
<th>Edward</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFP</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Estriol</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>B-hCG</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Inhibin-A</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>

Edward Syndrome
Trisomy 18
- Many cases die in utero
- 50% affected infants die in first two weeks
- Only 5 to 10% survive first year

Edward Syndrome
Trisomy 13
- Rare
- Severe intellectual disability
- Severe structural malformations
- Detected by fetal ultrasound >90% of cases

Edward Syndrome
Screening
- Physical features often diagnosed by fetal ultrasound
 - Limb deformities, congenital heart defects

Edward Syndrome
Trisomy 13
- Many cases die in utero
- 50% affected infants die in first two weeks
- Only 5 to 10% survive first year

Patau Syndrome
Trisomy 13
- Eye abnormalities
 - Microphthalmia: abnormally small eyes
 - Anophthalmia: absence of one or both eyes
 - Cleft lip and palate
 - Post-axial polydactyly
 - Polydactyly: extra finger or toe
 - Extra digit away from midline (ulnar)

Patau Syndrome
Trisomy 13
- Holoprosencephaly
 - CNS malformation
 - Failure of cleavage of prosencephalon
 - Left/right hemispheres fail to separate
 - May result in “alobar” brain

Patau Syndrome
Trisomy 13
- Rare
- Severe intellectual disability
- Severe structural malformations
- Detected by fetal ultrasound >90% of cases
Patau Syndrome
Trisomy 13

- Congenital heart disease (80% cases)
 - Ventricular septal defect (VSD)
 - Patent ductus arteriosus (PDA)
 - Atrial septal defect (ASD)

Most cases die in utero
Median survival 7 days
91% die within 1st year of life

Patau Syndrome
Trisomy 13

- Usually diagnosed by fetal ultrasound

<table>
<thead>
<tr>
<th>First Trimester</th>
<th>Down</th>
<th>Edward</th>
<th>Patau</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPP-A</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>B-hCG</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>
Muscular Dystrophy

Jason Ryan, MD, MPH

Muscular Dystrophies

- Group of genetic disorders
- More than 30 types
- All result from defects in genes for muscle function
- Main symptom: Progressive muscle weakness

Muscular Dystrophies

- Duchenne: Most common
- Becker: Milder variant of Duchenne
- Myotonic: Trinucleotide repeat disorder

Duchenne and Becker

- Both X-linked
- "X-linked muscular dystrophies"
- Both involve DMD gene and dystrophin protein
- Myotonic dystrophy
- Different gene
- Different protein
- Not X-linked (autosomal dominant)

DMD

Duchenne Muscular Dystrophy

- X-linked recessive disorder
 - All male carriers affected
 - 1/3 cases new mutations in fertilized egg (no parental carrier)
 - 2/3 inherited from carrier mothers

DMD

Duchenne Muscular Dystrophy

- Abnormal DMD gene
 - Massive gene (2300kb)
 - 1.5% of the X chromosome
 - Among largest known genes
 - High mutation rate
 - Codes for dystrophin
Dystrophin

- Maintains muscle membranes
- Connects intracellular actin to transmembrane proteins
- Binds α- and β-dystroglycan in membrane
- Connected to the extracellular matrix (laminin)

Dystrophin

- Also found in cardiac and smooth muscle
- Also found in some brain neurons

Dystrophin Gene Mutations

- Most mutations are deletions
- Duchenne: Frameshift mutation
 - Deletion disrupts reading frame
 - Early stop codon
 - Truncated or absent dystrophin protein
- Becker: Non-frameshift mutation
 - Some functioning protein
 - Less severe disease

DMD

Duchenne Muscular Dystrophy

- Loss of dystrophin → myonecrosis
- Creatine kinase elevation
 - Common in early stages
 - Released from diseased muscle
- Other muscle enzymes also elevated
 - Aldolase
 - Aspartate transaminase (AST)
 - Alanine transaminase (ALT)

DMD

Duchenne Muscular Dystrophy

- Affected boys normal first few years
- Weakness develops age 3-5
- Wheelchair usually by age 12
- Death usually by age 20
- Usually due to respiratory failure
- Sometimes heart failure
DMD
Becker Muscular Dystrophy
- Also X-linked recessive disorder
- 90% cases inherited from carrier mothers
- Less severe disease
- More males pass gene on to female offspring

DMD
Duchenne Muscular Dystrophy
- Diagnosis: Genetic testing
- Usually with variations of polymerase chain reaction
- Identify most common DMD gene abnormalities

DMD
Duchenne Muscular Dystrophy
- Western blot
- Absence of dystrophin in Duchenne
- Altered dystrophin in Becker

DMD
Duchenne Muscular Dystrophy
- Cardiomyopathy
 - Depressed LVEF
 - Systolic heart failure
 - Myocardial fibrosis
 - Conduction abnormalities
 - AV block
 - Arrhythmias

DMD
Duchenne Muscular Dystrophy
- Proximal muscles affected before distal limb muscles
- Lower limbs affected before upper extremities
- A affected children:
 - Difficulty running, jumping, climbing stairs
 - Use hands to push themselves up from chair (Gower’s sign)
 - Waddling gait
- Muscle replaced with fat/connective tissue
 - Calf enlargement
 - "Pseudohypertrophy"

DMD
Duchenne Muscular Dystrophy
- Muscle biopsy (rarely done in modern era)
 - Degeneration of fibers
 - Replacement of muscle by fat and connective tissue

DMD
Duchenne Muscular Dystrophy
- Cardiomyopathy
- Depressed LVEF
- Systolic heart failure
- Myocardial fibrosis
- Conduction abnormalities
 - AV block
 - Arrhythmias

DMD
Duchenne Muscular Dystrophy
- Proximal muscles affected before distal limb muscles
- Lower limbs affected before upper extremities
- Affected children:
 - Difficulty running, jumping, climbing stairs
 - Use hands to push themselves up from chair (Gower’s sign)
 - Waddling gait
- Muscle replaced with fat/connective tissue
 - Calf enlargement
 - "Pseudohypertrophy"

DMD
Becker Muscular Dystrophy
- Also X-linked recessive disorder
- 90% cases inherited from carrier mothers
- Less severe disease
- More males pass gene on to female offspring
BMD
Becker Muscular Dystrophy

• Milder form of muscular dystrophy
• Late age of onset
• Some patients remain ambulatory
• Often survive into 30s
Trinucleotide Repeat Disorders

Fragile X Syndrome

- X-linked dominant disorder
- Abnormal FMR1 gene
- Fragile X mental retardation 1 gene
- Found on long arm of X chromosome
- Most commonly an increase in CGG repeats
- Normal <55 repeats
- Full mutation: >200 repeats
- Leads to DNA methylation of FMR1 gene
- Gene silenced by methylation

- More severe among males (absence of normal X)
- 2nd most common genetic cause intellectual disability
- Anxiety, ADHD
- Often has features of autism
- Long, narrow face, large ears and jaw
- Macroorchidism (large testicles)
- Classic feature

- Down syndrome most common
- Anxietey, ADHD
- Often has features of autism
- Long, narrow face, large ears and jaw
- Macroorchidism (large testicles)
- Classic feature

- Occur in genes with repeat trinucleotide units
- Example: CAGCAGCAGCAG
- Most disorders involve nervous system
- Key examples
 - Fragile X syndrome
 - Friedreich's ataxia
 - Huntington's disease
 - Myotonic dystrophy

- Disease gene: "Unstable repeat expansions"
- Number of repeats may increase in offspring
- One generation to next: more repeats
- Key point: genetic abnormality changes over time
 - Anticipation
 - Disease severity worse in subsequent generations
 - Earlier onset in subsequent generations
 - Associated with more repeats in abnormal gene

Wild-type (normal) allele
- Found in most individuals
- Polymorphic
- Variable number of repeats from person to person
- Overall number of repeats relatively low

Disease (abnormal) allele
- Found in affected individuals
- Increased ("expanded") number of repeats
- Beyond the normal range
- Likely due to slipped DNA mispairing

Trinucleotide Repeat Disorders

Jason Ryan, MD, MPH
Myotonic Dystrophy

- **Type I** (most common)
 - Abnormal DMPK gene (chromosome 19)
 - Dystrophia myotonica protein kinase
 - CTG expansion
 - Codes for myotonic dystrophy protein kinase
 - Abnormal gene transcribed to mRNA but not translated
- **Type 2**: abnormal CNBP gene
 - Rare type
 - Usually less severe than type I
 - CCTG (tetranucleotide) repeat (not a trinucleotide disorder)

Huntington's Disease

- Degeneration in **basal ganglia** (striatum)
- Leads to chorea, dementia
- Onset of symptoms 30s-40s
- Death after 10-20 years

Friedreich's Ataxia

- **Hereditary ataxia disorder**
- Autosomal dominant
- Mutation of frataxin gene on chromosome 9
 - Needed for normal mitochondrial function
 - Increased number GAA repeats
 - Leads to decreased frataxin levels
- Frataxin: mitochondrial protein
 - High levels in brain, heart, and pancreas
 - Abnormal frataxin → mitochondrial dysfunction

Huntington's Disease

- Movement (CNS) disorder
- Autosomal dominant
- Mutation in the HTT gene
 - Codes for protein huntingtin
- Mutation → Increased CAG repeat
 - CAG codes for glutamine
 - "Polyglutamine disorders:" Huntington’s, other rare CNS diseases
- Normal 10-35 repeats
- Huntington’s 36 to 120 repeats

Friedreich's Ataxia

- Begins in adolescence with progressive symptoms
- Cerebellar and spinal cord degeneration
 - Loss of balance
 - Weakness
- Associated with hypertrophic cardiomyopathy
- Physical deformities:
 - Kyphoscoliosis
 - Foot abnormalities
Myotonic Dystrophy

- Most common MD that **begins in adulthood**
- Often starts in 20s or 30s
- Progressive muscle wasting and weakness
- Prolonged muscle contractions (myotonia)
- Unable to relax muscles after use
- Cannot release grip
- Locking of jaw

Myotonic Dystrophy

- Facial muscles often affected
- Characteristic facial appearance
- Caused by muscle weakness and wasting
- Long and narrow face
- Hollowed cheeks

Myotonic Dystrophy

- **Multisystem disorder**
- Many non-muscle features
- Hypogonadism
- Cataracts
- Cardiac arrhythmia
- Frontal balding

Myotonic Dystrophy

- **Cardiac involvement**
- Arrhythmias and conduction disease common
- First degree atrioventricular block (20 to 30%)
- Bundle branch block (10 to 15%)
- Atrial flutter and atrial fibrillation

Myotonic Dystrophy

- **Endocrine involvement**
- Primary hypogonadism
- Low testosterone
- Elevated FSH
- Oligospermia
- Infertility
- Testicular atrophy
- Insulin resistance

Myotonic Dystrophy

- **Facial muscles**
- Characteristic facial appearance
- Caused by muscle weakness and wasting
- Long and narrow face
- Hollowed cheeks

Myotonic Dystrophy

- **Cardiac arrhythmia**
- First degree atrioventricular block (20 to 30%)
- Bundle branch block (10 to 15%)
- Atrial flutter and atrial fibrillation

Myotonic Dystrophy

- **Endocrine involvement**
- Primary hypogonadism
- Low testosterone
- Elevated FSH
- Oligospermia
- Infertility
- Testicular atrophy
- Insulin resistance
Myotonic Dystrophy

Lung Involvement
- Respiratory complications common
- Weakness/myotonia of respiratory muscles
- Decreased vital capacity
- Alveolar hypoventilation
- Respiratory failure may occur

Myotonic Dystrophy

Intellectual Disability
- Common in myotonic dystrophy
- Severity worse with younger age of onset
- Childhood disease → severe cognitive impairment
Deletion Syndromes

Cri-du-chat Syndrome

• Severe intellectual disability
• Cognitive, speech, motor delays
• Infants cry like a cat
• Classically described as “mewing”: high-pitched cry
• Occurs soon after birth then resolves

• Deletion of part of short arm (p) of chromosome 5
 • “5p- syndrome”

• Partial deletion of chromosome
 • Long or short arm
 • Portion of long/short arm

Deletion Syndromes

• Most cases sporadic (congenital)
• Key syndromes:
 • Cri-du-chat
 • Williams
 • Thymic aplasia

Deletion Syndromes

• Usually an error in **crossover** in meiosis
 • Unbalanced exchange of genes
 • One chromosome with duplication; other with deletion

Deletion Syndromes

• Partial deletion of chromosome of short arm (p) of chromosome 5
 • “5p- syndrome”

Deletion Syndromes

• Most cases sporadic (congenital)
• Key syndromes:
 • Cri-du-chat
 • Williams
 • Thymic aplasia

Deletion Syndromes

• Usually an error in **crossover** in meiosis
 • Unbalanced exchange of genes
 • One chromosome with duplication; other with deletion

Deletion Syndromes

• Partial deletion of chromosome of short arm (p) of chromosome 5
 • “5p- syndrome”

Deletion Syndromes

• Most cases sporadic (congenital)
• Key syndromes:
 • Cri-du-chat
 • Williams
 • Thymic aplasia

Deletion Syndromes

• Usually an error in **crossover** in meiosis
 • Unbalanced exchange of genes
 • One chromosome with duplication; other with deletion

Deletion Syndromes

• Partial deletion of chromosome of short arm (p) of chromosome 5
 • “5p- syndrome”

Deletion Syndromes

• Most cases sporadic (congenital)
• Key syndromes:
 • Cri-du-chat
 • Williams
 • Thymic aplasia

Deletion Syndromes

• Usually an error in **crossover** in meiosis
 • Unbalanced exchange of genes
 • One chromosome with duplication; other with deletion

Deletion Syndromes

• Partial deletion of chromosome of short arm (p) of chromosome 5
 • “5p- syndrome”

Deletion Syndromes

• Most cases sporadic (congenital)
• Key syndromes:
 • Cri-du-chat
 • Williams
 • Thymic aplasia
Williams Syndrome

- Supravalvular aortic stenosis
- Constriction of ascending aorta above aortic valve
- High prevalence among children with WS
- Pulmonary artery stenosis
- Renal artery stenosis

Cri-du-chat Syndrome

- Congenital heart defects
 - Ventricular septal defect (VSD)
 - Patent ductus arteriosus (PDA)
 - Tetralogy of Fallot (TOF)
 - Others

Cri-du-chat Syndrome

- Partial deletion on long arm of chromosome 7
- Deleted portion includes gene for elastin
- Elastic protein in connective tissue
- Results in elastin "haploinsufficiency"
Thymic Aplasia
DiGeorge Syndrome
• Many different names
 • 22q11 deletion syndrome
 • Velocardiofacial syndrome
 • Shprintzen syndrome
 • Conotruncal anomaly face syndrome
• Partial deletion of long arm (q) chromosome 22
• Immune deficiency
• Hypocalcemia
• Congenital heart defects

Williams Syndrome
Hypercalcemia
• Higher calcium than general pediatric population
• Evidence of ↑ vitamin D levels and ↑ vitamin D sensitivity
• Usually mild to moderate
• Does not usually cause symptoms
• May lead to constipation

Hypercalcemia
• Higher calcium than general pediatric population
• Evidence of ↑ vitamin D levels and ↑ vitamin D sensitivity
• Usually mild to moderate
• Does not usually cause symptoms
• May lead to constipation
Klinefelter Syndrome

- Male with primary hypogonadism
- Small, firm testes
- Atrophy of seminiferous tubules
- Low testosterone
- Ratio of estrogens:testosterone determines severity

Klinefelter and Turner

- Sex chromosome aneuploidy disorders
- Klinefelter: Male with extra X (XXY)
- Turner: Female with missing X (X0)

Karyotype

- Diagnosis of both syndromes
- Often multiple cells to look for mosaicism

Klinefelter Syndrome

- Usually 47 XXY (~80% of cases)
- Usually *meiotic nondisjunction* of either parent
- Rarely 48,XXXY (more severe)
- Or 46,XY/47,XXY mosaicism (less severe)
- Nondisjunction during *mitosis* after conception

Klinefelter Syndrome

- Male with primary hypogonadism
 - Small, firm testes
 - Atrophy of seminiferous tubules
 - Low testosterone
 - Ratio of estrogens:testosterone determines severity
Klinefelter Syndrome

- Increased gonadotropins
 - Loss of inhibin B → ↑FSH
 - ↓ testosterone → ↑ LH

Cognitive Findings
- Learning disabilities
- Delayed speech/language development
- Quiet personality
- Quiet, unassertive

Physical Appearance
- Long legs and arms
- Extra copy of SHOX gene (X-chromosome)
- Important for long bone growth
- “Eunuchoid body shape”

Genital Abnormalities
- Cryptorchidism (undescended testes)
- Hypospadias
- Micropenis

Low Testosterone Features
- Delayed puberty
- Reduced facial/body hair
- Female pubic hair pattern
- Gynecomastia
- Infertility/reduced sperm count

FSH and LH

- Increased gonadotropins
- Loss of inhibin B → ↑FSH
- ↓ testosterone → ↑ LH

Klinefelter Syndrome

Klinefelter Syndrome
Turner Syndrome

- Hallmark: female with primary hypogonadism
- Loss of ovarian function
- "Gonadal dysgenesis"
- May have "streak ovaries"
- Streaks of fibrous tissue seen in expected location of ovaries
- No or very few follicles

General Features
- Female with short stature
- Loss of one copy of SHOX gene on X-chromosome
- Growth hormone treatment: given in childhood
- Broad chest (shield chest)
- Widely spaced nipples

Genetic Causes
- Often 45, XO (45% cases)
- Most cases caused by sperm lacking X chromosome
- Mosaic Turner syndrome (often milder)
 - 45,X/46,XX
 - Mitotic nondisjunction during post-zygotic cell division

Genetics
- Barr Body
 - Inactivated X chromosome
 - Normally found in cells of females (XX)
 - One X chromosome undergoes "Lyonization"
 - Condensed into heterochromatin with methylated DNA
 - Seen in cells of patients with Klinefelter's
 - Not normally seen in males

Cystic Hygroma
- Congenital lymphatic defect
- Large collection of lymph/cysts
- Often found in head/neck
- Often seen in utero on US

Turner Syndrome

- Lymphatic obstruction in fetal development
- Webbed neck
- Swollen hands/feet (especially at birth)

Barr Body
- Inactivated X chromosome
 - Normally found in cells of females (XX)
 - One X chromosome undergoes "Lyonization"
 - Condensed into heterochromatin with methylated DNA
 - Seen in cells of patients with Klinefelter's
 - Not normally seen in males

Ovarian Function
- Hallmark: female with primary hypogonadism
 - Loss of ovarian function
 - "Gonadal dysgenesis"
 - May have "streak ovaries"
 - Streaks of fibrous tissue seen in expected location of ovaries
 - No or very few follicles
Turner Syndrome

Ovarian Function

- Decreased inhibin B
- Decreased estrogens
- Increased LH/FSH
- Levels can vary during childhood
 - Sometimes within normal range
 - Often abnormal in early childhood (<5) and pre-puberty (>10)

- Most women infertile
- Some can become pregnant with donated oocytes

Turner Syndrome

Cardiovascular

- ~30% of children born with bicuspid aortic valve
- 5-10% of children have coarctation of the aorta
- High blood pressure may occur in childhood
 - Sometimes due to coarctation or renal disease
 - Often primary

- Primary amenorrhea (most common cause)
 - “Menopause before menarche”
 - Some girls menstruate with menopause in teens/20s
 - More common in cases with mosaicism

Turner Syndrome

Renal Manifestations

- Kidney malformations affect ~ 1/3 patients
- Abnormal collecting ducts
- Often a horseshoe kidney

Turner Syndrome

Osteoporosis

- High incidence of osteoporosis
- Low circulating estrogens
- Estrogen treatments often prescribed
Turner Syndrome

Endocrine

- Type II Diabetes
 - Turner syndrome 2x risk of general population
- Thyroid disease
 - ~1/3 have a thyroid disorder
 - Usually hypothyroidism from Hashimoto’s thyroiditis